全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水蕨(Ceratopteristhalictroides)查尔酮合成酶基因的克隆和表达

DOI: 10.11913/PSJ.2095-0837.2015.40489, PP. 489-498

Keywords: 查尔酮合成酶(CHS),RACE,水蕨

Full-Text   Cite this paper   Add to My Lib

Abstract:

?查尔酮合酶(chalconesynthase,CHS)是植物类黄酮化合物合成的关键酶,有关蕨类植物CHS基因的序列及功能信息尚不完善。本研究采用快速扩增cDNA末端(RACE)技术克隆获得了模式蕨类植物——水蕨(Ceratopteristhalictroides)CtCHS基因(GenBank登录号:JX027616.1),其cDNA序列全长为1616bp,具有3个外显子和2个内含子,开放阅读框(ORF)为1215bp,编码404个氨基酸。进化树分析表明,CtCHS与问荆(Equisetumarvense)、松叶蕨(Psilotumnudum)和3种薄囊蕨的查尔酮合成酶基因聚为一枝,说明这些蕨类植物亲缘关系较近且为单系起源。通过构建原核表达体系成功获得CtCHS蛋白的多克隆抗体并用于免疫印迹分析,结果表明CtCHS基因的表达明显受紫外光(UV)诱导。CtCHS基因的克隆与表达分析为进一步研究水蕨类黄酮化合物的合成及其调控机制提供了依据。

References

[1]  Markham KR. Distribution of flavonoids in the lower plants and its evolutionary significance[M]// Harborne JB ed. The flavonoids. London: Chapman and Hall, 1988: 427-468.
[2]  Bohin MC, Vincken JP, van der Hijden HTWM, Gruppen H. Efficacy of food proteins as carriers for flavonoids[J].J Agric Food Chem, 2012, 60: 4136-4143.
[3]  Xiao JB, Chen TT, Cao H, Chen LS, Yang F. Molecular property-affinity relationship of flavanoids and flavonoids for human serum albumin in vitro[J].Mol Nutr Food Res, 2011, 55: 310-317.
[4]  Xiao JB, Cao H, Wang YF, Zhao JY, Wei XL. Glycosylation of dietary flavonoids decreases the affinities for plasma protein[J].J Agr Food Chem, 2009, 57: 6642-6648.
[5]  Roowi S, Crozier A. Flavonoids in tropical citrus species[J].J Agr Food Chem, 2011, 59: 12217-[JP]12225.
[6]  Dao TTH, Linthorst HJM, Verpoorte R. Chalcone synthase and its functions in plant resistance[J].Phytochem Rev, 2011, 10: 397-412.
[7]  Sanchez IJF. Polyketide synthase in Cannabis sativa L[D].Leiden, the Netherlands: Leiden University, 2008.
[8]  Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP. Structure of chalcone synthase and the mole-cular basis of plant polyketide biosynthesis[J].Nat Struct Biol, 1999, 6: 775-784.
[9]  Suh DY, Fukuma K, Kagami J, Yamazaki Y, Shibuya M, Ebizuka Y, Sankawa U. Identification of amino acid residues important in the cyclization reactions of chalcone and stilbene synthases[J].Biochem J, 2000, 350: 229-235.
[10]  Jez JM, Noel JP. Mechanism of chalcone synthase pKa of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase[J].J Biol Chem, 2000, 275: 39640-39646.
[11]  Huang L, Wang H, Ye H, Du Z, Zhang Y, Beerhues L, Liu B. Differential expression of benzophenone synthase and chalcone synthase in Hypericum sampsonii[J].Nat Prod Commun, 2012, 7: 1615-1618.
[12]  Liu XJ, Chuang YN, Chiou CY, Chin DC, Shen FQ, Yeh KW. Methylation effect on chalcone synthase gene expression determines anthocyanin pigmentation in floral tissues of two Oncidium orchid cultivars[J].Planta, 2012, 236: 401-409.
[13]  Ursula NK, Barzen E, Bemhardardt J, Rohde W, Schwarz-Sommer Z, ReifH J, Wiennand U, Saedler H. Chalcone synthase genes in plants: a tool to study evolutionary relationship[J].J Mol Evol, 1987, 26: 213-225.
[14]  Dong X, Braun EL, Grotewold E. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes[J].Plant Phy-siol, 2001, 127: 46-57.
[15]  Lukacin R, Schreiner S, Matern U. Transformation of acridone synthase to chalcone synthase[J].Febs Lett, 2001, 508: 413-417.
[16]  Yang J, Huang J, Gu H, Zhong Y, Yang Z. Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae) [J].Mol Biol Evol, 2002, 19: 1752-1759.
[17]  Chatterjee A, Roux SJ. Ceratopteris richardii: a productive model for revealing secrets of signaling and development[J].J Plant Growth Regul, 2000, 19: 284-289.
[18]  Muthukumar B, Joyce BL, Elless MP, Stewart CN Jr. Stable transformation of ferns using spores as targets: Pteris vittata and Ceratopteris thalictroides[J].Plant Physiol, 2013, 163: 648-658.
[19]  Plackett ARG, Huang L, Sanders HL, Langdale JA. High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment[J].Plant Physiol, 2014, 165: 3-14.
[20]  Sommer H, Saedler H. Structure of the chalcone synthase gene of Antirrhinum majus[J].Mol Gen Genet, 1986, 202: 429-434.
[21]  Yamazaki Y, Suh DY, Sitthithaworn W, Ishiguro K, Kobayashi Y, Shibuya M, Ebizuka Y, Sankawa U. Diverse chalcone synthase superfamily enzymes from the most primitive vascular plant, Psilotum nudum[J].Planta, 2001, 214: 75-84.
[22]  Jiang CG, Schommer CK, Kim SY, Suh DY. Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens[J].Phytochem, 2006, 67: 2531-2540.
[23]  Smith AR, Pryer KM, Schuettpelz E, Korall P, Schneider H, Wolf PG. A classification for extant ferns[J].Taxon, 2006, 55: 705-731.
[24]  Stapleton AE. Ultraviolet radiation and plants: Burning questions[J].Plant Cell, 1992, 4: 1353-1358.
[25]  Schmelzer E, Jahnen W, Hahlbrock K. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves[J].P Natl Acad Sci USA, 1988, 85: 2989-2993.
[26]  Kubasek WL, Shirley BW, McKillop A, Goodman HM, Briggs W, Ausubel FM. Regulation of flavonoid biosynthetic genes in germinating Arabidopsis seedlings[J].Plant Cell, 1992, 4: 1229-1236.
[27]  Koes RE, Spelt CE, van den Elzen PJ, Mol JN. Cloning and molecular characterization of the chalcone synthase multigene family of Petunia hybrida[J].Gene, 1989, 81: 245-257.
[28]  Ryan KG, Swinny EE, Markham KR, Winefield C. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves[J].Phytochem, 2002, 59: 23-32.
[29]  Berli FJ, Moreno D, Piccoli P, Hespanhol-Viana L, Silva MF, Bressan-Smith R, Cavagnaro JB, Bottini R. Abscisic acid is involved in the response of grape (Vitis vinifera L.) cv. Malbec leaf tissues to ultraviolet-B radiation by enhancing ultraviolet-absorbing compounds, antioxidant enzymes and membrane sterols[J].Plant Cell Environ, 2010, 33: 1-10.
[30]  Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B. Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation[J].New Phytol, 2010, 188: 985-1000.
[31]  Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M. The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves[J].J Plant Physiol, 2011, 168: 204-212.
[32]  Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light[J].Plant J, 2011, 67: 354-369.
[33]  Verdan AM, Wang HC, García CR, Henry WP, Brumaghim JL. Iron binding of 3-hydroxychromone, 5-hydroxychromone, and sulfonated morin: Implications for the antioxidant activity of flavonols with competing metal binding sites[J].J Inorg Biochem, 2011, 105: 1314-1322.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133