Maiti A, Michelson AZ, Armwood CJ, Lee JK, Drohat AC. Divergent mechanisms for enzymatic excision of 5-formylcytosine and 5-carboxylcytosine from DNA[J].J Am Chem Soc, 2013, 135(42): 15813-15822.
[2]
Bagci H, Fisher AG. DNA demethylation in pluripotency and reprogramming: the role of tet proteins and cell division[J].Cell Stem Cell, 2013, 13(3): 265-269.
[3]
Wang L, Zhang J, Duan J, Gao X, Zhu W, Lu X, Yang L, Zhang J, Li G, Ci W, Li W, Zhou Q, Aluru N, Tang F, He C, Huang X, Liu J. Programming and inheritance of parental DNA methylomes in mammals[J].Cell, 2014, 157(4): 979-991.
[4]
Kawashima T, Berger F. Epigenetic reprogramming in plant sexual reproduction[J].Nat Rev Genet, 2014, 15(9): 613-624.
Kim JM, To TK, Nishioka T, Seki M. Chromatin regulation functions in plant abiotic stress responses[J].Plant Cell Environ, 2010, 33(4): 604-611.
[8]
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals[J].Nat Genet, 2003, 33(Suppl): 245-254.
Bouché N, Fromm H. GABA in plants: just a metabolite?[J].Trends Plant Sci, 2004, 9(3): 110-115.
[11]
Yu GH, Liang JG, He ZK, Sun MX. Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco[J].Chem Biol, 2006, 13(7): 723-731.
Liu CL, Zhao L, Yu GH. The dominant glutamic acid metabolic flux to produce γ-aminobutyric acid over proline in Nicotiana tabacum leaves under water stress relates to its significant role in antioxidant activity[J].J Integr Plant Biol, 2011, 53(8): 608-618.
Yu GH, Zou J, Feng J, Peng XB, Wu JY, Wu YL, Palanivelu R, Sun MX. Exogenous γ-aminobutyric acid (GABA) affects pollen tube growth via modulating putative Ca2+-permeable membrane channels and is coupled to negative regulation on glutamate decarboxylase[J].J Exp Bot, 2014, 65(12): 3235-3248.
[17]
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J].Nat Rev Genet, 2010,11(3): 204-220.
[18]
Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M. Epigenetic mechanisms of plant stress responses and adaptation[J].Plant Cell Rep, 2013, 32(8): 1151-1159.
[19]
Slotkin RK, Vaughn M, Borges F, Tanurdzic'' M, Becker JD, Feijó JA, Martienssen RA. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen[J].Cell, 2009, 136(3): 461-472.
[20]
Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, Galbraith DW, Benfey PN. A gene expression map of the Arabidopsis root[J].Science, 2003, 302(5652): 1956-1960.
[21]
Yu GH, Peng XB, Cheng G, Liu XQ, Wang CT, Sun MX. Specifically proteomic identification of differentially expressed proteins linking pollen tube growth with γ-aminobutyric acid responses in Nicotiana tabacum pollen proteomics[C]//21st IUBMB & 12th FAOBMB International Congress of Biochemistry and Molecular Biology. Shanghai, 2009: 116.
[22]
Yu GH, Zhao L, Xiang WH, Qin YH, Xu X. Whole-genome scale analysis of gene expression profiling of Arabidopsis flowering promotion in responding to γ-aminobutyric acid signals[C]//2012 International Symposium on Epigenetic Regulation in Higher Plants (2012 ISERHP). Beijing: 2012.
[23]
Tang Y, Xiong J, Jiang HP, Zheng SJ, Feng YQ, Yuan BF. Determination of oxidation products of 5-methylcytosine in plants by chemical derivatization coupled with liquid chromatography/tandem mass spectrometry analysis[J].Anal Chem, 2014, 86(15): 7764-7772.
[24]
Brooks SC, Fischer RL, Huh JH, Eichman BF. 5-methylcytosine recognition by Arabidopsis thaliana DNA glycosylases DEMETER and DML3[J].Biochem, 2014, 53(15): 2525-2532.
[25]
Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Ullah I, Wang Y. Detection of oxidation products of 5-Methyl-29-Deoxycytidine in Arabidopsis DNA[J].PLoS One, 2013, 8(12): e84620.
[26]
Moricová P, Ondej V, Navrátilová B, Luhová L. Changes of DNA methylation and hydroxymethylation in plant protoplast cultures[J].Acta Biochim Pol, 2013, 60(1): 33-36.