全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

POPcorn: An Online Resource Providing Access to Distributed and Diverse Maize Project Data

DOI: 10.1155/2011/923035

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of the online resource presented here, POPcorn (Project Portal for corn), is to enhance accessibility of maize genetic and genomic resources for plant biologists. Currently, many online locations are difficult to find, some are best searched independently, and individual project websites often degrade over time—sometimes disappearing entirely. The POPcorn site makes available (1) a centralized, web-accessible resource to search and browse descriptions of ongoing maize genomics projects, (2) a single, stand-alone tool that uses web Services and minimal data warehousing to search for sequence matches in online resources of diverse offsite projects, and (3) a set of tools that enables researchers to migrate their data to the long-term model organism database for maize genetic and genomic information: MaizeGDB. Examples demonstrating POPcorn’s utility are provided herein. 1. Introduction 1.1. Need for the POPcorn Resource In 1998, the National Science Foundation (NSF) launched the Plant Genome Research Program (PGRP), as part of the National Plant Genome Initiative. The establishment of PGRP coincided with an explosion of technologies that allowed large-scale genomic experiments to flourish, and PGRP grants fueled unprecedented advances in plant genomics research. This program was unique in that it strongly encouraged large collaborative projects and required project outcomes to be publicly available. Largely as the result of NSF’s forward thinking program, many independent online resources for plant research have been developed in the past 12 years. While this abundance of genomic data has transformed plant science in many ways, it has also created some problems: the plethora of independent websites requires researcher awareness of the various projects and what data each offers. Finding and using these resources is not always straightforward. Most sites use a variety of different tools that are often unique to that resource, each requiring that the researcher learn how to interact with them. In addition, it is also often difficult to use the results from one resource in another, and it is not generally possible to search multiple resources at the same time. Instead, researchers find themselves repeating the same search (e.g., BLAST [1]) at multiple sites in the hopes of locating all information relevant to their research. In addition, when funding for a project ends, the data generated often are not moved to long-term repositories. Thus, project sites degrade over time and sometimes disappear entirely. When the previously accessible data

References

[1]  S. F. Altschul, T. L. Madden, A. A. Sch?ffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997.
[2]  B. Buxton, V. Hayward, I. Pearson, et al., “Big data: the next Google. Interview by Duncan Graham-Rowe,” Nature, vol. 455, pp. 8–9, 2008.
[3]  C. Lynch, “Big data: how do your data grow?” Nature, vol. 455, no. 7209, pp. 28–29, 2008.
[4]  D. Howe, M. Costanzo, P. Fey et al., “Big data: the future of biocuration,” Nature, vol. 455, no. 7209, pp. 47–50, 2008.
[5]  W. D. Beavis, Ed., Architectures for Integration of Data and Applications: Lessons from Integration Projects, Columbia, Mo, USA, 2005.
[6]  C. J. Lawrence, L. C. Harper, M. L. Schaeffer, T. Z. Sen, T. E. Seigfried, and D. A. Campbell, “MaizeGDB: the maize model organism database for basic, translational, and applied research,” International Journal of Plant Genomics, vol. 2008, Article ID 496957, 10 pages, 2008.
[7]  T. Sen, C. Andorf, M. Schaeffer, et al., “MaizeGDB becomes “sequence-centric”,” Database, vol. 2009, p. bap020, 2009.
[8]  R. Fielding, Architectural styles and the design of network-based software architectures, Doctoral Dissertation, University of California, 2000.
[9]  S. B. Baran, C. J. Lawrence, and V. Brendel, “Plant genome research outreach portal. A gateway to plant genome research "outreach" programs and activities,” Plant Physiology, vol. 134, no. 3, p. 889, 2004.
[10]  J. Duvick, A. Fu, U. Muppirala et al., “PlantGDB: a resource for comparative plant genomics,” Nucleic Acids Research, vol. 36, no. 1, pp. D959–D965, 2008.
[11]  C. Lushbough, M. K. Bergman, C. J. Lawrence, D. Jennewein, and V. Brendel, “BioExtract server—an integrated workflow-enabling system to access and analyze heterogeneous, distributed biomolecular data,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 7, no. 1, pp. 12–24, 2010.
[12]  Ethalinda K. S. Cannon, “Chromosome visualization tool: a whole genome viewer,” International Journal of Plant Genomics, vol. 2011, Article ID 373875, 4 pages, 2011.
[13]  A. Lanzén and T. Oinn, “The Taverna Interaction Service. Enabling manual interaction in workflows,” Bioinformatics, vol. 24, no. 8, pp. 1118–1120, 2008.
[14]  P. S. Schnable, D. Ware, R. S. Fulton et al., “The B73 maize genome: complexity, diversity, and dynamics,” Science, vol. 326, no. 5956, pp. 1112–1115, 2009.
[15]  T. Sen, L. Harper, M. Schaeffer, et al., “Choosing a genome browser for a Model Organism Database: surveying the maize community,” Database, vol. 2010, p. baq007, 2010.
[16]  D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 36, no. 1, pp. D25–D30, 2008.
[17]  A. Yilmaz, M. Y. Nishiyama, B. G. Fuentes et al., “GRASSIUS: a platform for comparative regulatory genomics across the grasses,” Plant Physiology, vol. 149, no. 1, pp. 171–180, 2009.
[18]  K. Youens-Clark, E. Buckler, T. Casstevens et al., “Gramene database in 2010: updates and extensions,” Nucleic Acids Research, vol. 39, no. 1, supplement, pp. D1085–D1094, 2011.
[19]  C. Antonescu, V. Antonescu, R. Sultana, and J. Quackenbush, “Using the DFCI gene index databases for biological discovery,” Current Protocols in Bioinformatics, vol. 1, pp. Unit1.6.1–36, 2010.
[20]  Y. Fu, S. J. Emrich, L. Guo et al., “Quality assessment of maize assembled genomic islands (MAGIs) and large-sclae experimental verification of predicted genes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 34, pp. 12282–12287, 2005.
[21]  R. P. Wise, R. A. Caldo, L. Hong, L. Shen, E. Cannon, and J. A. Dickerson, “BarleyBase/PLEXdb: a unified expression profiling database for plants and plant pathogens,” Methods in Molecular Biology, vol. 406, pp. 347–363, 2007.
[22]  R. Williams-Carrier, N. Stiffler, S. Belcher et al., “Use of Illumina sequencing to identify transposon insertions underlying mutant phenotypes in high-copy Mutator lines of maize,” Plant Journal, vol. 63, no. 1, pp. 167–177, 2010.
[23]  D. D. G. Gessler, G. S. Schiltz, G. D. May et al., “SSWAP: a simple semantic web architecture and protocol for semantic web services,” BMC Bioinformatics, vol. 10, p. 309, 2009.
[24]  R. T. Nelson, S. Avraham, R. C. Shoemaker, G. D. May, D. Ware, and D. D. G. Gessler, “Applications and methods utilizing the Simple Semantic Web Architecture and Protocol (SSWAP) for bioinformatics resource discovery and disparate data and service integration,” BioData Mining, vol. 3, no. 1, article 3, 2010.
[25]  R. S. Barga and L. A. Digiampietri, “Automatic capture and efficient storage of e-Science experiment provenance,” Concurrency Computation Practice and Experience, vol. 20, no. 5, pp. 419–429, 2008.
[26]  F. Tian, P. J. Bradbury, P. J. Brown et al., “Genome-wide association study of leaf architecture in the maize nested association mapping population,” Nature Genetics, vol. 43, pp. 159–162, 2011.
[27]  D. R. McCarty, A. Mark Settles, M. Suzuki et al., “Steady-state transposon mutagenesis in inbred maize,” The Plant Journal for Cell and Molecular Biology, vol. 44, no. 1, pp. 52–61, 2005.
[28]  A. M. Settles, D. R. Holding, B. C. Tan et al., “Sequence-indexed mutations in maize using the UniformMu transposon-tagging population,” BMC Genomics, vol. 8, article 116, 2007.
[29]  K. R. Ahern, P. Deewatthanawong, J. Schares et al., “Regional mutagenesis using Dissociation in maize,” Methods, vol. 49, no. 3, pp. 248–254, 2009.
[30]  E. Vollbrecht, J. Duvick, J. P. Schares et al., “Genome-wide distribution of transposed Dissociation elements in maize,” Plant Cell, vol. 22, no. 6, pp. 1667–1685, 2010.
[31]  J. M. Kolkman, L. J. Conrad, P. R. Farmer et al., “Distribution of Activator (Ac) throughout the maize genome for use in regional mutagenesis,” Genetics, vol. 169, no. 2, pp. 981–995, 2005.
[32]  M. Cowperthwaite, W. Park, Z. Xu, X. Yan, S. C. Maurais, and H. K. Dooner, “Use of the transposon Ac as a gene-searching engine in the maize genome,” Plant Cell, vol. 14, no. 3, pp. 713–726, 2002.
[33]  B. J. Till, S. H. Reynolds, C. Weil et al., “Discovery of induced point mutations in maize genes by TILLING,” BMC Plant Biology, vol. 4, article 12, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133