Biodegradable starch-based chitosan reinforced composite polymeric films were prepared by casting. The chitosan content in the films was varied from 20% to 80% (w/w). Tensile strength (TS) was improved significantly with the addition of chitosan but elongation at break (EB %) of the composites decreased. Tensile strength of the composites raised more with the addition of the acacia catechu content in the films varied from 0.05% to 0.2% (w/w). The better thermal stability of this prepared film was confirmed by thermo-gravimetric analysis. Structural characterization was done by Fourier transform infrared spectroscopy. Surface morphologies of the composites were examined by scanning electron microscope (SEM) which suggested sufficient homogenization of starch, chitosan and acacia catechu. Water uptake was found lower for final composites in comparison to starch/chitosan and chitosan films. The satisfactory rate of degradation in the soil is expected that the final composite film is within less than 6 months. The developed films intended to use as the alternative of synthetic non-biodegradable colored packaging films.
References
[1]
Pagella, C., Spigno, G. and De Faveri, D.M. (2002) Characterization of Starch Based Edible Coatings. Food and Bioproducts Processing, 80, 193-198. http://dx.doi.org/10.1205/096030802760309214
[2]
Ban, W.P., Song, J.G., Argyropoulos, D.S. and Lucia, L.A. (2006) Influence of Natural Biomaterials on the Elastic Properties of Starch-Derived Films: An Optimization Study. Industrial & Engineering Chemistry Research, 45, 627-633. http://pubs.acs.org/doi/abs/10.1021/ie050219s
[3]
Daia, H., Changb, P.R., Yua, J. and Maa, X. (2008) N,N-Bis(2-hydroxyethyl)formamide as a New Plasticizer for Thermoplastic Starch. Starch/Stärke, 60, 676-684. http://dx.doi.org/10.1002/star.200800017
[4]
Parra, D.F., Tadini, C.C., Ponce, P. and Lugão, A.B. (2004) Mechanical Properties and Water Vapor Transmission in Some Blends of Cassava Starch Edible Films. Carbohydrate Polymers, 58, 475-481.http://dx.doi.org/10.1016/j.carbpol.2004.08.021
[5]
Wu, D., Wang, T., Lu, B., Xu, X., Cheng, S. and Jiang, X. (2008) Fabrication of Supramolecular Hydrogels for Drug Delivery and Stem Cell Encapsulation. Langmuir, 24, 10306-10312. http://dx.doi.org/10.1021/la8006876
[6]
Khan, F., Tare, R., Richard, O., Oreffo, R. and Bradley, M. (2009) Versatile Biocompatible Polymer Hydrogels: Scaffolds for Cell Growth. Angewandte Chemie International Edition in English, 48, 978-982. http://dx.doi.org/10.1002/anie.200804096
[7]
Sorber, J., Steiner, G., Schulz, V., Guenther, M., Gerlach, G. and Salzer, R. (2008) Hydrogel-Based Piezoresistive pH Sensors: Investigations Using FT-IR Attenuated Total Reflection Spectroscopic Imaging. Analytical Chemistry, 80, 2957-2962. http://dx.doi.org/10.1021/ac702598n
[8]
Katsoulos, C., Karageorgiadis, L., Vasileiou, N., Mousafeiropoulos, T. and Asimellis, G. (2009) Customized Hydrogel Contact Lenses for Keratoconus Incorporating Correction for Vertical Coma Aberration. Ophthalmic and Physiological Optics, 29, 321-329. http://dx.doi.org/10.1111/j.1475-1313.2009.00645.x
[9]
Ha, E.J., Kim, Y.J., An, S.S.A., Kim, Y.K., Lee, J.O. and Lee, S.G. (2008) Purification of His-Tagged Protein Using Ni2+-Poly(2-acetamidoacrylic Acid) Hydrogel. Journal of Chromatography B, 876, 8-12.http://dx.doi.org/10.1016/j.jchromb.2008.10.020
[10]
Indian Council of Forestry Research and Education (2010) Dehradun. Khair (Acacia catechu). Dehradun, Forest Research Institute. http://www.frienvis.nic.in/WriteReadData/UserFiles/file/pdfs/Khair.pdf
[11]
Arunachalam, M., Mohan Raj, M., Mohan, N. and Mahadevan, A. (2003) Biodegradation of Catechin. Proceedings of the Indian National Science Academy, 69, 353-370.http://www.new1.dli.ernet.in/data1/upload/insa/INSA_1/20008a2f_353.pdf
[12]
The Wikipedia. http://en.wikipedia.org/wiki.
[13]
Chen, M.C., Yeh, G.H.C. and Chiang, B.H. (1996) Antimicrobial and Physicochemical Properties of Methylcellulose and Chitosan Films Containing a Preservative. Journal of Food Processing Preservation, 20, 379-390.http://dx.doi.org/10.1111/j.1745-4549.1996.tb00754.x
[14]
Helander, I.M., Nurmiaho-Lasilla, E.L., Ahvenainen, R., RhoadeS, J. and Roller, S. (2001) Chitosan Disrupts the Barrier Properties of the Outer Membrane of Gram-Negative Bacteria. International Journal of Food Microbiology, 71, 235-244. http://dx.doi.org/10.1016/S0168-1605(01)00609-2
[15]
Knowles, S. and Roller, S. (2001) Efficacy of Chitosan, Carvacrol, and a Hydrogen Peroxide-Based Biocide against Foodborne Microorganisms in Suspension and Adhered to Stainless Steel. Journal of Food Protection, 64, 1542-1548.http://www.ncbi.nlm.nih.gov/pubmed/11601703
[16]
Coma, V., MartiaL-Gros, A., Garreau, S., Copinet, A., Salin, F. and Deschamps, A. (2002) Edible Antimicrobial Films Based on Chitosan Matrix. Journal of Food Science, 67, 1162-1169.http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2621.2002.tb09470.x/pdf
[17]
Möller, H., Grelier, S., Pardon, P. and Coma, V. (2004) Antimicrobial and Physicochemical Properties of Chitosan- HPMC-Based Films. Journal of Agricultural and Food Chemistry, 52, 6585-6591. http://dx.doi.org/10.1021/jf0306690
[18]
Roller, S. and Covill, N. (1999) The Antifungal Properties of Chitosan in Laboratory Media and Apple Juice. International Journal of Food Microbiology, 47, 67-77. http://dx.doi.org/10.1016/s0168-1605(99)00006-9
[19]
Xu, Y.X., Kim, K.M., Hanna, M.A. and Nag, D. (2005) Chitosan-Starch Composite Film: Preparation and Characterization. Industrial Crops and Products, 21, 185-192. http://dx.doi.org/10.1016/j.indcrop.2004.03.002
[20]
Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M.I. and Goyanes, S. (2009) Physico-Mechanical Properties of Biodegradable Starch Nanocomposites. Macromolecular Materials and Engineering, 294, 169-177.http://dx.doi.org/10.1002/mame.200800271
[21]
Shorgen, R.L. (1998) Starch: Properties and Materials Applications. In: Kaplan, D.L., Ed., Biopolymers from Renewable Resources, Springer-Verlag, Berlin, 30-46. http://link.springer.com/chapter/10.1007%2F978-3-662-03680-8_2
[22]
Mathew, A.P. and Dufresne, A. (2002) Plasticized Waxy Maize Starch: Effect of Polyols and Relative Humidity on Material Properties. Biomacromolecules, 3, 1101-1108. http://dx.doi.org/10.1021/bm020065p
[23]
Wang, X.L., Yang, K.K. and Wang, Y.Z. (2003) Properties of Starch Blends with Biodegradable Polymers. Journal of Macromolecular Science: Part C, 43, 385-409. http://dx.doi.org/10.1081/MC-120023911
[24]
Xu, Y.X., Miladinov, V. and Hanna, M.A. (2004) Synthesis and Characterization of Starch Acetates with High Substitution. Cereal Chemistry, 81, 735-740. http://dx.doi.org/10.1094/CCHEM.2004.81.6.735
[25]
Thuwall, M., Boldizar, A. and Rigdahl, M. (2006) Extrusion Processing of High Amylose Potato Starch Materials. Carbohydrate Polymers, 65, 441-446. http://dx.doi.org/10.1016/j.carbpol.2006.01.033
[26]
Pinotti, A., Garcia, M.A., Martinoa, M.N. and Zaritzkya, N.E. (2007) Study on Microstructure and Physical Properties of Composite Films Based on Chitosan and Methylcellulose. Food Hydrocollids, 21, 66-72.http://www.sciencedirect.com/science/article/pii/S0268005X06000415
[27]
Khan, R.A., Salmieri, S., Dussault, D., Calderon, J.U., Kamal, M.R., Safrany, A. and Lacroix, M. (2012) Preparation, Gamma-Irradiation and Thermo-Mechanical Characterization of Chitosan-Loaded Methylcellulose Films. Polymers and the Environment, 20, 43-52. http://link.springer.com/article/10.1007%2Fs10924-011-0336-y