全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应对微网群大规模接入的互联和互动新方案及关键技术

DOI: 10.13336/j.1003-6520.hve.2015.10.003, PP. 3193-3203

Keywords: 微网群,能源互联,多端直流,电力市场,需求侧互动,聚合代理

Full-Text   Cite this paper   Add to My Lib

Abstract:

在国家能源转型背景和规划下,微网大规模接入已逐渐成为趋势,这不仅需要解决电网结构和运行对大规模微网接入的限制,而且需要解决大规模微网的互动机制,提升微网运行控制的柔性和经济性。针对微网群大规模接入问题,综合目前国内外解决方案和研究进展,提出了微网群互联和互动新方案,并对其中涉及的关键技术和难点的国内外研究进行了综述和分析,最后设计和分析了大规模微网群互联互动的典型案例。结果表明,通过多微网间能源互联互补,不仅能够实现微网之间相互支撑,互为备用,提高系统可靠性,也在更大范围实现了能源互补,使微网群更加有效地提升辅助服务,并参与到多种形式的电力市场中。

References

[1]  Chen D, Xu L. Autonomous DC voltage control of a DC microgrid with multiple slack terminals[J]. IEEE Transactions on Power Systems, 2012, 27(4): 1897-1905.
[2]  Yuen C, Oudalov A, Timbus A. The provision of frequency control reserves from multiple microgrids[J]. IEEE Transactions on Industrial Electronics, 2011, 58(1): 173-183.
[3]  Cardell J B, Tee C Y. Distributed energy resources in electricity markets: the price droop mechanism[C]∥2010 48 th Annual Allerton Conference on Communication, Control, and Computing. Allerton, England: IEEE, 2010: 58-65.
[4]  Asimakopoulou G E, Dimeas A L, Hatziargyriou N D. Leader-follower strategies for energy management of multi-microgrids[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1909-1916.
[5]  牛 铭,黄 伟,郭佳欢,等. 微网并网时的经济运行研究[J]. 电网技术,2010,34(11):38-42. NIU Ming, HUANG Wei, GUO Jiahuan, et al . Research on economic operation of grid-connected microgrid[J]. Power System Technology, 2010, 34(11): 38-42.
[6]  Chen C, Duan S, Cai T, et al . Smart energy management system for optimal microgrid economic operation[J]. IET Renewable Power Generation, 2011, 5 (3): 258-267.
[7]  Mancarella P, Chicco G. Real-time demand response from energy shifting in distributed multi-generation[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1928-1938.
[8]  Houwing M, Negenborn R R, De Schutter B. Demand response with micro-CHP systems[J]. Proceedings of the IEEE, 2011, 99(1): 200-213.
[9]  艾 欣,许佳佳. 基于互动调度的微网与配电网协调运行模式研究[J]. 电力系统保护与控制,2013,41(1):143-149. AI Xin, XU Jiajia. Study on the microgrid and distribution network cooperation model based on interactive scheduling[J]. Power System Protection and Control, 2013, 41(1): 143-149.
[10]  Nguyen D T, Le L B. Risk-constrained profit maximization for microgrid aggregators with demand response[J]. IEEE Transactions on Smart Grid, 2014, 6(1): 135-146.
[11]  邢 龙,张沛超,方 陈,等. 基于广义需求侧资源的微网运行优化[J]. 电力系统自动化,2013,37(12):7-12. XING Long, ZHANG Peichao, FANG Chen, et al . Optimal operation for microgrid using generalized demand side resources[J]. Automation of Electric Power Systems, 2013, 37(12): 7-12.
[12]  吴 雄,王秀丽,崔 强. 考虑需求侧管理的微网经济优化运行[J]. 西安交通大学学报,2013,47(6):90-96. WU Xiong, WANG Xiuli, CUI Qiang. Optimal operation of microgrid considering demand side management[J]. Journal of Xi’an Jiaotong University, 2013, 47(6): 90-96.
[13]  Choi S, Park S, Kang D J, et al . A microgrid energy management system for inducing optimal demand response[C]∥2011 IEEE International Conference on Smart Grid Communications. Brussels, Belgium: IEEE, 2011: 19-24.
[14]  茆美琴,孙树娟,苏建徽. 包含电动汽车的风/光/储微电网经济性分析[J]. 电力系统自动化,2011,35(14):30-35. MAO Meiqin, SUN Shujuan, SU Jianhui. Economic analysis of a microgrid with wind/photovoltaic/storages and electric vehicles[J]. Automation of Electric Power Systems, 2011, 35(14): 30-35.
[15]  Gouveia C, Moreira J, Moreira C L, et al . Coordinating storage and demand response for microgrid emergency operation[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 1898-1908.
[16]  吴红斌,侯小凡,赵 波,等. 计及可入网电动汽车的微网系统经济调度[J]. 电力系统自动化,2014,38(9):77-84. WU Hongbin, HOU Xiaofan, ZHAO Bo, et al . Economical dispatch of microgrid considering plug-in electric vehicles[J]. Automation of Electric Power Systems, 2014, 38(9): 77-84.
[17]  Gkatzikis L, Koutsopoulos I, Salonidis T. The role of aggregators in smart grid demand response markets[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(7): 1247-1257.
[18]  Nunna H, Doolla S. Demand response in smart distribution system with multiple microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1641-1649.
[19]  国家能源局. 国家能源局关于公布创建新能源示范城市(产业园区)名单(第一批)的通知, 国能新能14号[EB/OL]. 2014-01-08[2015-09-08]1http://zfxxgk.nea.gov.cn/auto87/201402/t20140212_1762.htm. National Energy Administration. Public announcement on construction of new-energy demonstration city (Industrial Park) by National Energy Administration (the first group). Guo neng xin neng No.14[EB/OL]. 2014-01-08[2015-09-08]1http://zfxxgk.nea.gov.cn/auto87/201402/t20140212_1762.htm.
[20]  王成山,武 震,李 鹏. 微电网关键技术研究[J]. 电工技术学报,2014,29(2):1-12. WANG Chengshan, WU Zhen, LI Peng. Research on key technologies of microgrid[J]. Transactions of China Electrotechnical Society, 2014, 29(2): 1-12.
[21]  杨新法,苏 剑,吕志鹏,等. 微电网技术综述[J]. 中国电机工程学报,2014,34(1):57-70. YANG Xinfa, SU Jian, LÜ Zhipeng, et al . Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57-70.
[22]  Ustun T S, Ozansoy C, Zayegh A. Recent developments in microgrids and example cases around the world-a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4030-4041.
[23]  Soshinskaya M, Crijns-Graus W H J, Guerrero J M, et al . Microgrids: experiences, barriers and success factors[J]. Renewable and Sustainable Energy Reviews, 2014, 40(1): 659-672.
[24]  Zhang X, Pei W, Deng W, et al . Emerging smart grid technology for mitigating global warming[J]. International Journal of Energy Research, 2015, 39(13): 1742-1756.
[25]  Marnay C, Zhou N, Qu M, et al . International microgrid assessment governance, incentives, and experience[R]. Berkeley, California, USA: Lawrence Berkeley National Laboratory, 2012: 14-20.
[26]  贾宏杰,穆云飞,余晓丹. 对我国综合能源系统发展的思考[J]. 电力建设,2015,36(1):16-25. JIA Hongjie, MU Yunfei, YU Xiaodan. Thought about the integrated energy system in China[J]. Electric Power Construction, 2015, 36(1): 16-25.
[27]  董朝阳,赵俊华,文福拴,等. 从智能电网到能源互联网:基本概念与研究框架[J]. 电力系统自动化,2014,38(15):1-11. DONG Zhaoyang, ZHAO Junhua, WEN Fushuan, et al . From smart grid to energy internet: basic concept and research framework[J]. Automation of Electric Power Systems, 2014, 38(15): 1-11.
[28]  Ali M, Jokisalo J, Siren K, et al . Combining the demand response of direct electric space heating and partial thermal storage using LP optimization[J]. Electric Power Systems Research, 2014, 106(1): 160-167.
[29]  裴 玮,邓 卫,沈子奇,等. 可再生能源与热电联供混合微网能量协调优化研究[J]. 电力系统自动化, 2014,38(16):9-15. PEI Wei, DENG Wei, SHEN Ziqi, et al . Energy coordination and optimization of hybrid microgrid based on renewable energy and CHP supply [J]. Automation of Electric Power Systems, 2014, 38(16): 9-15.
[30]  Kondoh J, Lu N, Hammerstrom D J. An evaluation of the water heater load potential for providing regulation service[J]. IEEE Transactions on Power Systems, 2011, 26(3): 1309-1316.
[31]  Wang D, Ge S, Jia H, et al . A demand response and battery storage coordination algorithm for providing microgrid tie-line smoothing services[J]. IEEE Transactions on Sustainable Energy, 2015, 5(2): 476-486.
[32]  王 丹,范孟华,贾宏杰. 考虑用户舒适约束的家居温控负荷需求响应和能效电厂建模[J]. 中国电机工程学报,2014,34(13):2071-2077. WANG Dan, FAN Menghua, JIA Hongjie. User comfort constraint demand response for residential thermostatically-controlled loads and efficient power plant modeling[J]. Proceedings of the CSEE, 2014, 34(13): 2071-2077.
[33]  Mancarella P. MES (multi-energy systems): an overview of concepts and evaluation models [J]. Energy, 2014, 65(1): 1-17.
[34]  江 渝,黄 敏,毛 安,等. 孤立微网的多目标能量管理[J]. 高电压技术, 2014,40(11):3519-3527. JIANG Yu, HUANG Min, MAO An, et al . Multi-objective energy management of isolated microgrid[J]. High Voltage Engineering, 2014, 40(11): 3519-3527.
[35]  苏 玲,张建华,苗唯时,等. 微型燃气轮机微网控制策略[J]. 高电压技术,2010,36(2):513-518. SU Ling, ZHANG Jianhua, MIAO Weishi, et al . Control strategy of microturbine microgrid[J]. High Voltage Engineering, 2010, 36(2): 513-518.
[36]  Guandalini G, Campanari S, Romano M C. Power-to-gas plants and gas turbines for improved wind energy dispatchability: energy and economic assessment[J]. Applied Energy, 2015, 147(1): 117-130.
[37]  Vandewalle J, Bruninx K, D’haeseleer W. Effects of large-scale power to gas conversion on the power, gas and carbon sectors and their interactions[J]. Energy Conversion and Management, 2015, 94(1): 28-39.
[38]  Geidl M, Andersson G. Optimal power flow of multiple energy carriers[J]. IEEE Transactions on Power Systems, 2007, 22 (1): 145-155.
[39]  Li T, Eremia M, Shahidehpour M. Interdependency of natural gas network and power system security[J]. IEEE Transactions on Power Systems, 2008, 23 (4): 1817-1824.
[40]  Xu X, Jia H, Chiang H D, et al. Dynamic modeling and interaction of hybrid natural gas and electricity supply system in microgrid[J]. IEEE Transactions on Power Systems, 2015, 30(3): 1212-1221.
[41]  Xu X, Jia H, Wang D, et al . Hierarchical energy management system for multi-source multi-product microgrids[J]. Renewable Energy, 2015, 78(1): 621-630.
[42]  Liu X, Wu J, Jenkins N, et al . Combined analysis of electricity and heat networks[J/OL]. Applied Energy, [2015-03-12]. http://www.sciencedirect.com/science/article/pii/S0306261915001385.
[43]  Menon R P, Paolone M, Maréchal F. Study of optimal design of polygeneration systems in optimal control strategies[J]. Energy, 2013, 55(1): 134-141.
[44]  Parisio A, Del Vecchio C, Vaccaro A. A robust optimization approach to energy hub management [J]. International Journal of Electrical Power & Energy Systems, 2012, 42(1): 98-104.
[45]  Kyriakarakos G, Dounis A I, Rozakis S, et al . Polygeneration microgrids: a viable solution in remote areas for supplying power, potable water and hydrogen as transportation fuel[J]. Applied Energy, 2011, 88 (12): 4517-4526.
[46]  Guo L, Liu W, Cai J, et al . A two-stage optimal planning and design method for combined cooling, heat and power microgrid system[J]. Energy Conversion and Management, 2013, 74(1): 433-445.
[47]  Elsayed A T, Mohamed A A, Mohammed O A. DC microgrids and distribution systems: an overview[J]. Electric Power Systems Research, 2015, 119(1): 407-417.
[48]  Huang A Q, Crow M L, Heydt G T, et al . The future renewable electric energy delivery and management (FREEDM) system: the energy internet[J]. Proceedings of the IEEE, 2011, 99(1): 133-148.
[49]  Majumder R. Aggregation of microgrids with DC system[J]. Electric Power Systems Research, 2014, 108(1): 134-143.
[50]  Pei W, Deng W, Zhang X, et al . Potential of using multi-terminal LVDC to improve plug-in electric vehicles integration in an existing distribution[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5): 3101-3111.
[51]  Feng W, Le Tuan A, Tjernberg L B, et al . A new approach for benefit evaluation of multiterminal VSC-HVDC using a proposed mixed AC/DC optimal power flow[J]. IEEE Transactions on Power Delivery, 2014, 29(1): 432-443.
[52]  Beerten J, Cole S, Belmans R. Generalized steady-state VSC MTDC model for sequential AC/DC power flow algorithms[J]. IEEE Transactions on Power Systems, 2012, 27(2): 821-829.
[53]  王成山,孙充勃,彭 克,等. 微电网交直流混合潮流算法研究[J]. 中国电机工程学报,2013,33(4):8-15. WANG Chengshan, SUN Chongbo, PENG Ke, et al . Study on AC-DC hybrid power flow algorithm for microgrid[J]. Proceedings of the CSEE, 2013, 33(4): 8-15.
[54]  Baradar M, Hesamzadeh M R, Ghandhari M. Second-order cone programming for optimal power flow in VSC-type AC-DC grids[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4282-4291.
[55]  Rodrigues S, Pinto R T, Bauer P, et al . Optimal power flow control of VSC-based multiterminal DC network for offshore wind integration in the North Sea[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013,1(4): 260-268.
[56]  Valverde G, Van Cutsem T. Model predictive control of voltages in active distribution networks[J]. IEEE Transactions on Smart Grid, 2013, 4(4): 2152-2161.
[57]  杨向真,苏建徽,丁 明,等. 面向多逆变器的微电网电压控制策略[J]. 中国电机工程学报,2012,32(7):7-13. YANG Xiangzhen, SU Jianhui, DING Ming, et al . Voltage control strategies for microgrid with multiple inverters[J]. Proceedings of the CSEE, 2012, 32(7): 7-13.
[58]  杨志淳,乐 健,刘开培,等. 基于多智能体的含虚拟发电厂配电网的电压稳定性协调控制[J]. 电力自动化设备,2013,33(11):32-37. YANG Zhichun, LE Jian, LIU Kaipei, et al . Coordinative voltage stability control based on multi-agent theory for distribution network with VPP[J]. Electric Power Automation Equipment, 2013, 33(11): 32-37.
[59]  陆晓楠,孙 凯,黄立培. 适用于交直流混合微电网的直流分层控制系统[J]. 电工技术学报,2013,28(4):35-42. LU Xiaonan, SUN Kai, HUANG Lipei. DC hierarchical control system for microgrid applications[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 35-42.
[60]  张 学,裴 玮,邓 卫,等. 多源多负荷直流微电网能量管理和协调控制[J]. 中国电机工程学报,2014,34(31):5553-5562. ZHANG Xue, PEI Wei, DENG Wei, et al . Energy management and coordinated control method for multi-source/multi-load DC microgrid[J]. Proceedings of the CSEE, 2014, 34(31): 5553-5562.
[61]  Lu X, Sun K, Guerrero J M, et al . State-of-charge balance using adaptive droop control for distributed energy storage systems in DC microgrid applications[J]. IEEE Transactions on Industrial Electronics, 2014, 61(6): 2804-2815.
[62]  Lu X, Guerrero J M, Sun K, et al . Hierarchical control of parallel AC-DC converter interfaces for hybrid microgrids[J]. IEEE Transactions on Smart Grid, 2014, 5(2): 683-692.
[63]  Nunna H, Doolla S. Responsive end-user based demand side management in multi-microgrid environment[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2): 1262-1272.
[64]  Kasbekar G S, Sarkar S. Pricing games among interconnected microgrids[C]∥2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA: IEEE, 2012: 1-8.
[65]  赵 敏,沈 沉,刘 锋,等. 基于博弈论的多微电网系统交易模式研究[J]. 中国电机工程学报,2015,35(4):848-857. ZHAO Min, SHEN Chen, LIU Feng, et al . Game-theoretic approach to analyzing power trading possibilities in multi-microgrids[J]. Proceedings of the CSEE, 2015, 35(4): 848-857.
[66]  江润洲,邱晓燕,李 丹. 基于多代理的多微网智能配电网动态博弈模型[J]. 电网技术,2014,38(12):3321-3327. JIANG Runzhou, QIU Xiaoyan, LI Dan. Multi-agent system based dynamic game model of smart distribution network containing multi-microgrid[J]. Power System Technology, 2014, 38(12): 3321-3327.
[67]  王 晶,王宗礼,张 颖. 多代理协调技术在微网中的应用研究综述[J]. 中国电力,2013, 46 (10):67-73. WANG Jing, WANG Zongli, ZHANG Ying. A review of the application of multi-agent coordinated technology in microgrids[J]. Electric Power, 2013, 46 (10): 67-73.
[68]  Dimeas A, Hatziargyriou N. Methods and applications of Artificial Intelligence[M]. Berlin, Germany: Springer, 2004: 447-455.
[69]  艾 欣,陈 炜. 考虑容量管理的主动配电网市场化实时竞价运营模式[J]. 中国电机工程学报,2014,34(22):3743-3749. AI Xin, CHEN Wei. Marketization real-time bidding operation mode of the active distribution network with consideration of capacity management[J]. Proceedings of the CSEE, 2014, 34(22): 3743-3749.
[70]  周恒俊. 面向智能配网的能量管理系统体系结构[J]. 高电压技术,2010,36(8):2088-2094. ZHOU Henjun, GUO Chuangxin. Architecture of energy management system faced smart distribution grid[J]. High Voltage Engineering, 2010, 36(8): 2088-2094.
[71]  Kim H, Thottan M. A two-stage market model for microgrid power transactions via aggregators[J]. Bell Labs Technical Journal, 2011, 16(3): 101-107.
[72]  Kim H, Kim Y J, Yang K, et al . Cloud-based demand response for smart grid: architecture and distributed algo-rithms[C]∥2011 IEEE International Conference on Smart Grid Communications. Brussels, Belgium: IEEE, 2011: 398-403.
[73]  艾 芊,章 健. 基于多代理系统的微电网竞价优化策略[J]. 电网技术,2010,34(2):46-51. AI Qian, ZHANG Jian. Optimization bidding strategies of microgrids based on multi-agent system[J]. Power System Technology, 2010, 34(2): 46-51.
[74]  陈 鹏,周 晖. 微电网电力市场交易模型研究[J]. 电力需求侧管理,2011,13(4):23-29. CHEN Peng, ZHOU Hui. Research on trading model of microgrid under market conditions[J]. Power Demand Side Management, 2011, 13(4): 23-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133