全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

砒砂岩火山灰活性及碱激发改性

DOI: 10.14062/j.issn.0454-5648.2015.08.11

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用沸煮法,研究了饱和石灰水和不同浓度NaOH溶液对砒砂岩中SiO2、Al2O3溶出量的影响,通过胶砂强度试验对砒砂岩活性进行了探讨,并以碱溶液浓度、养护方式和养护龄期为变量,通过强度测试、X射线衍射、Fourier红外光谱(FTIR)和扫描电子显微镜(SEM)等手段,对砒砂岩改性材料的力学性能、产物类型和微观结构进行了研究,探讨了将砒砂岩改性为碱激发材料的可行性。结果表明砒砂岩具有一定的火山灰活性,碱浓度对砒砂岩中SiO2、Al2O3溶出量有显著影响,碱浓度越高,SiO2、Al2O3溶出量越大,对碱浓度为2mol/L的NaOH溶液,白色、红色砒砂岩的SiO2、Al2O3溶出率分别可达31.7%和32.93%;碱溶液浓度、养护温度、养护龄期对改性材料的抗压强度有显著影响,相对砒砂岩原岩,改性材料的抗压强度和耐水性均有较大提高,90d龄期试件抗压强度最高达11.63MPa。FTIR和SEM-EDS结果表明,改性材料的反应产物主要为无定型水化硅酸钙类胶凝物质。

References

[1]  毕慈芬, 邰源林, 王富贵, 等. 防止砒砂岩地区土壤侵蚀的水土保持综合技术探讨[J]. 泥沙研究,2003, 3: 63–65.BI Cifen, TAI Yuanlin, WANG Fugui, et al. J Sediment Res (inChinese), 2003, 3: 63–65.
[2]  NI H B, ZHANG L P, ZHANG D R, et al. Weathering of Pishasandstones in the wind-water erosion crisscross region on the LoessPlateau[J]. J Mountain Sci, 2008, (5):340–349.
[3]  吴利杰, 李新勇, 石建省, 等. 砒砂岩的微结构定量化特征研究[J].地球学报, 2007, 28(6): 597–602.WU Lijie, LI Xinyong, SHI Jiansheng, et al. Acta Geosci Sin (inChinese), 2007, 28(6): 597–602.
[4]  石迎春, 叶浩, 侯宏冰, 等. 内蒙古南部砒砂岩侵蚀内因分析[J].地球学报, 2004, 25(6): 659–664.SHI Yingchun, YE Hao, HOU Hongbing, et al. Acta Geosci Sin (inChinese), 2004, 25(6): 659–64.
[5]  YANG F S, CAO M M, LI H E, et al. Simulation of sediment retentioneffects of the single seabuckthorn flexible dam in Pisha sandstonearea[J]. Ecolo Eng, 2013, 52: 228–237.
[6]  冉大川. 黄河中游河龙区间水沙变化研究综述[J]. 泥沙研究,2000(3): 12–14.RAN Dachuan. J Sediment Res (in Chinese), 2000(3): 12–14.
[7]  钱宁, 王可钦, 闫林德, 等. 黄河中游粗泥沙来源区及其对黄河下游冲淤的影响[C]//中国水利学会, 河流泥沙国际学术讨论会论文集.北京: 光华出版社, 1980: 53–62.QIAN Ning, WANG Keqin, YAN Linde, et al. Effect of coarsesediment source region in the middle Yellow River on scour andsiltation in the lower Yellow River [C]//In First International AcademicConference Proceedings on River and Sediment. Beijing, China, 1980:53–62.
[8]  徐建华, 吴成基, 林银平, 等. 黄河中游粗泥沙集中来源区界定研究[J]. 水土保持学报, 2006, 20(1): 6–14.XU Jianhua, WU Chengji, LIN Yinping, et al. J Soil Water Conserv (inChinese), 2006, 20(1): 6–14.
[9]  毕慈芬, 王富贵, 李桂芬, 等. 砒砂岩地区沟道植物“柔性坝”拦沙试验[J]. 泥沙研究, 2003(2): 14–25.BI Cifen WANG Fugui LI Guifen, et al. J Sediment Res (in Chinese),2003(2): 14–25.
[10]  吴永红, 胡建忠, 闫晓玲, 等. 砒砂岩区沙棘林生态工程减洪减沙作用分析[J]. 中国水土保持科学, 2011, 9(1): 68–73.WU Yonghong, HU Jianzhong, YAN Xiaoling, et al. Sci Soil WaterConserv (in Chinese), 2011, 9(1): 68–73.
[11]  刘卉芳, 曹文洪, 秦伟, 等. 淤地坝在流域水土保持措施中的贡献研究[J]. 中国农村水利水电, 2011(1): 55–64.LIU Huifang, CAO Wenhong, QIN Wei, et al. China Rural WaterHydropower (in Chinese), 2011(1): 55–64.
[12]  冉大川, 李占斌, 罗全华, 等. 黄河中游淤地坝工程可持续减沙途径分析[J]. 水土保持研究, 2013, 20(3): 1–5.RAN Dachuan, LI Zhanbin, LUO Quanhua, et al. Res Soil WaterConserv (in Chinese), 2013, 20(3): 1–5.
[13]  康玲玲, 张胜利, 魏义长, 等. 黄河中游水利水土保持措施减沙作用研究的回顾与展望[J]. 中国水土保持科学, 2010, 8(2): 111–116.KANG Lingling, ZHANG Shengli, WEI Yichang, et al. Sci Soil WaterConserv (in Chinese), 2010, 8(2): 111–116.
[14]  冉大川, 张志萍, 罗全华, 等. 大理河流域1970~2002 年水保措施减洪减沙效益深化分析[J]. 水土保持研究, 2011, 18(1): 17–23.RAN Dachuan, ZHANG Zhiping, LUO Quanhua, et al. Res Soil WaterConserv (in Chinese), 2011, 18(1): 17–23.
[15]  高照良, 杨世伟. 黄土高原地区淤地坝存在问题分析[J]. 水土保持通报, 1999, 19(6): 16–19.GAO Zhaoliang, YANG Shiwei. Bull Soil Water Conserv (in Chinese),1999, 19(6): 16–19.
[16]  贾耀东, 阎培渝. 粉煤灰中SiO2 在不同碱性条件下的溶出量及与火山灰活性指数的关系[J]. 硅酸盐学报, 2009, 37(7): 1074–1078.JIA Yaodong, YAN Peiyu. J Chin Ceram Soc, 2009, 37(7): 1074–1078.
[17]  SOFI M, VAN Deventer J S J, MENDIS P A, et al. Engineeringproperties of inorganic polymer concretes (IPCs)[J]. Cem Concr Res,2007, 37: 251–257.
[18]  DE VARGAS A S, DAL M D C C, VILELA A C F, et al. The effects ofNa2O/SiO2 molar ratio, curing temperature and age on compressivestrength, morphology and microstructure of alkali-activated flyash-based geopolymers[J]. Cem Concr Compos, 2011, 33: 653–660.
[19]  廉慧珍, 张志龄, 王英华. 火山灰质材料活性的快速评定方法[J].建筑材料学报, 2001, 4(3): 299–304.LIAN Huizhen, ZHANG Zhiling, WANG Yinghua. J Build Mater (inChinese), 2001, 4(3): 299–304.
[20]  俞乐华, 欧辉, 周双喜, 等. 珍珠岩火山灰活性研究[J]. 西安建筑科技大学学报: 自然科学版, 2008, 40(1): 87–92.YU Lehua, OU Hui, ZHOU Shuangxi, et al. J Xi’an Univ Arch Tech:Nat Sci Ed (in Chinese), 2008, 40(1): 87–92.
[21]  BAKHAREV T, SANJAYAN J G, CHENG Y B. Effect of admixtureson properties of alkali-actived slag concrete[J]. Cem Concr Res, 2001,30: 1367–1374.
[22]  HU M Y, ZHU X M, LONG F M. Alkali-activated fly ash-basedgeopolymers with zeolite or bentonite as additives[J]. Cem Concr Res,2009, 31(10): 762–768.
[23]  KOMNITSAS K, ZAHARAKI D, PERDIKATSIS V. Effect of synthesisparameters on the compressive strength of low-calcium ferronickel slaginorganic polymers[J]. J Hazard Mater, 2009, 161: 760–768.
[24]  GUETTALA A, ABIBSI A, HOUARI H. Durability study of stabilizedearth concrete under both laboratory and climatic conditionsexposure[J]. Constr Build Mater, 2006, 20: 119–127.
[25]  杨南如, 岳文海. 无机非金属材料图谱手册[M]. 武汉: 武汉工业大学出版社, 2000: 20.
[26]  HAHA M B, LE SAOUT G, WINNEFELD F, et al. Influence ofactivator type on hydration kinetics, hydrate assemblage andmicrostructural development of alkali activated blast-furnace slags[J].Cem Concr Res, 2011, 41: 301–310.
[27]  TAYLOR H F W. Cement Chemistry[M]. 2nd Ed. England: ThomasTelford, 1997: 114–115.
[28]  杨南如. 碱胶凝材料形成的物理化学基础(II)[J]. 硅酸盐学报, 1996,24(4): 459–465.YANG Nanru. J Chin Ceram Soc, 1996, 24(4): 459–465.
[29]  柯昌君. 粉煤灰蒸压制品中长石的激发机理[J]. 硅酸盐学报, 2006,34(8): 1011–1016.KE Changjun. J Chin Ceram Soc, 2006, 34(8): 1011–1016.
[30]  BAKHAREV T. Durability of geopolymer materials in sodium andmagnesium sulfate solutions[J]. Cem Concr Res, 2005, 35: 1233–1246.
[31]  常钧, 房延凤, 李勇. 钙硅比对水化硅酸钙加速碳化的影响[J]. 硅酸盐学报, 2014, 42(11): 1377–1382.CHANG Jun, FANG Yanfeng, LI Yong. J Chin Ceram Soc, 2014,42(11): 1377–1382.
[32]  

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133