全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
计算数学  2014 

半线性椭圆问题Petrov-Galerkin逼近及亏量迭代

, PP. 316-324

Keywords: Petrov-Galerkin逼近,亏量迭代,插值算子

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文考虑了二阶半线性椭圆问题的Petrov-Galerkin逼近格式,用双二次多项式空间作为形函数空间,用双线性多项式空间作为试探函数空间,证明了此逼近格式与标准的二次有限元逼近格式有同样的收敛阶.并且根据插值算子的逼近性质,进一步证明了半线性有限元解的亏量迭代序列收敛到Petrov-Galerkin解.

References

[1]  Barrett J W, Moore G. Optimal recovery in the finite element method, Part 2: Defect correction for ordinary differential equations[J]. IMA J. Numer. Anal., 1988, 8: 527-540.
[2]  Krasnosel'sk M A etc. Approximation Solution of Operator Equationgs[M]. Moscow Press, 1969 (in Russian).
[3]  王凯. 矩形元上插值算子压缩性质及有限元迭代校正[J]. 数学杂志, 2001, 21(3): 319-328.
[4]  Lawrence C Evans. Partial Differential Equations, 1997, American Mathematical Society.
[5]  Frank R, Hertling J, Monnet J P. The application of iterated defect correction to variational methods for elliptic boundary value problems[J]. Computing, 1983, 30: 121-135.
[6]  Blum H. Asymptotic Error Expansion and Defect Correction in the Finite Element Method. Habilitation-Schrift, Universitat Heidelberg 1990.
[7]  Rannacher R. Defect correction techniques in the finite element method, Metz Days on Numerical Analysis, Univ. Metz., June 1990.
[8]  Lin Q, Yang Y D, Interpolation and correction of finite element[J]. Math. Practice Theory, 1991, 3: 29-33.
[9]  Lin Q, Zhou A H. Defect correction for finite element gradient[J]. Syst. Sci. Math. Sci., 1992, 5(3): 278-288.
[10]  Yang Y D. Correction method of the finite element for quasilinear elliptic bounder value problems[J]. Math. Numer. Sinica, 1992, 14: 467-471.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133