全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

封闭离散点的曲线拟合方法

, PP. 437-441

Keywords: 机械工程,移动最小二乘法,曲线拟合,封闭离散点,叶片

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于移动最小二乘法构造了一种新的封闭离散点拟合方法。该方法利用移动最小二乘法基于点的拟合原理,在离散点之间定义拟合点,划分支持域半径,实现了支持域有序的划分方式。基于封闭离散点的几何特征,提出一种新的权值确定方法,该方法通过构造一个与弦长有关的点,赋予支持域内各点的权值,使临近点的权值变化逐步衰减,实现了拟合曲线的局部逼近。利用提出的封闭曲线拟合方法对叶片截面形线离散点进行拟合,验证了该方法的有效性。

References

[1]  Mukherjee Y X, Mukherjee S. On boundary conditions in the element-free Galerkin method[J]. Computational Mechanics, 1997, 19: 264-270.
[2]  陈美娟,程玉民. 改进的移动最小二乘法[J]. 力学季刊,2003, 24(2): 266-272.Chen Mei-juan, Cheng Yu-min. The improved moving least-square approximation[J]. Chinese Quarterly of Mechanics, 2003, 24(2): 266-272.
[3]  程玉民,彭妙娟,李九红. 复变量移动最小二乘法及其应用[J]. 力学学报,2005, 37(6): 719-723.Cheng Yu-min, Peng Miao-juan, Li Jiu-hong. The moving least-square approximation and its application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6): 719-723.
[4]  程玉民,李九红. 弹性力学的复变量无网格法[J]. 物理学报,2005, 54(10): 4463-4471.Cheng Yu-min, Li Jiu-hong. A meshless method with complex variables for elasticity[J]. Acta Physica Sinica, 2005, 54(10): 4463-4471.
[5]  Cheng Y M, Li J H. A complex variable meshless method for fracture problems[J]. Science in China Ser G Physics, Mechanics & Astronomy, 2006, 49(1): 46-59.
[6]  李九红,程玉民. 一种新的无网格方法与有限元耦合法[J]. 工程数学学报,2008, 25(6): 1035-1043.Li Jiu-hong, Cheng Yu-min. A new coupled meshless-finite element method[J]. Chinese Journal of Engineering Mathematics, 2008, 25(6): 1035-1043.
[7]  Hussler-Combe U, Korn C. An adaptive approach with the element-free-Galerkin method[J].Compt Methods Appl Mech Eng, 1998, 162:203-222.
[8]  Fritsch F N, Carlson R E. Monotone piecewise cubic interpolation[J]. SIAM Journal of Numerical Analysis, 1980, 17:238-246.
[9]  Fritsch F N, Butland J. A method for constructing local monotone piecewise cubic interpolates[J]. SIAM Journal of Scientific and Statistical Computing, 1984, 5:303-304.
[10]  Passow E, Roulier J A. Monotone and convex spline interpolation[J]. SIAM Journal of Numerical Analysis, 1977, 14(5):904-909.
[11]  Lavery J E. Shape-preserving, multiscale fitting of univariate data by cubic L1 smoothing splines [J]. Computer Aided Geometric Design, 2000, 17(7):715-727.
[12]  Lancaster P, Salkauskas K. Surface generated by moving least square methods[J]. Mathematics of Computation, 1981, 37:141-158.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133