全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
湖泊科学  2015 

基于二次重现期的多变量洪水风险评估

DOI: 10.18307/2015.0221

Keywords: 多变量洪水特征,极值分布,安全与危险域,Kendall函数,二次重现期,多变量设计值

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于洪水是一种具有多个特征属性的随机事件,频率分析成为洪水风险评估的一种有效手段,多变量重现期与设计值的定义与计算则是洪水频率分析中的重点和难点.本文通过构造洪水历时、洪峰与洪量的联合分布,介绍了一种新的多变量重现期定义——二次重现期,并探讨了"或"重现期、"且"重现期和二次重现期对安全与危险域识别的差异性,以及在洪水风险管理与工程设计中的合理性与可靠性.传统的"或"和"且"多变量重现期对安全与危险域的识别存在局限性,利用Kendall函数定义的二次重现期则提供了更加合理的安全与风险域识别,避免了对安全事件与危险事件的错误判定,更有利于指导洪水风险的管理.在给定的二次重现期条件下,依据出现概率最大原则推算的历时、洪峰与洪量设计值组合可以满足工程设计以较低成本承受较大风险的追求,相比于单变量设计值,考虑了洪水多个属性联合特征的多变量设计值提供了更加全面和可靠的参考信息.

References

[1]  郭生练,闫宝伟,肖义等.Copula函数在多变量水文分析计算中的应用及研究进展.水文,2008,28(3):1-6.
[2]  Zhang L, Singh VP. Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 2006, 11(2):150-164.
[3]  Zhang L, Singh VP. Trivariate flood frequency analysis using the Gumbel-Hougaard copula. Journal of Hydrologic Engineering, 2007, 12(4):431-439.
[4]  侯芸芸,宋松柏,赵丽娜等.基于Copula函数的3变量洪水频率研究.西北农林科技大学学报:自然科学版,2010,38(2):219-228.
[5]  Shiau JT. Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 2006, 20:795-815.
[6]  Salvadori G, De Michele C, Durante F. On the return period and design in a multivariate framework. Hydrology and Earth System Sciences, 2011, 15:3293-3305.
[7]  Corbella S, Stretch DD. Multivariate return periods of sea storms for coastal erosion risk assessment. Natural Hazards and Earth System Sciences, 2012, 12:2699-2708.
[8]  Salvadori G, Tomasicchio GR, Alessandro FD. Multivariate approach to design coastal and off-shore structures. Journal of Coastal Research, 2013, 65:386-391.
[9]  Yue S, Ouarda TBMJ, Bobée B et al. The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 1999, 226(1):88-100.
[10]  Salvadori G, de Michele C, Kottegoda N et al. Extremes in Nature:An approach using copulas. Dordrecht:Springer, 2007:15-30.
[11]  Favre AC, Adlouni SE, Perreault L et al. Multivariate hydrological frequency analysis using copulas. Water Resources Research, 2004, 40:W01101. doi:10.1029/2003WR002456.
[12]  Nelson RB. An introduction to copulas:Second edition. New York:Springer, 2006:115-143.
[13]  Salvadori G, de Michele C. Multivariate multiparameter extreme value models and return periods:A copula approach. Water Resource Research, 2010, 46:W10501. doi:10.1029/2009WR009040.
[14]  Salvadori G, de Michele C. Frequency analysis via copulas:Theoretical aspects and applications to hydrological events. Water Resources Research, 2004, 40:W12511. doi:10.1029/2004WR003133.
[15]  Chebana F, Ouarda TBMJ. Multivariate quantiles in hydrological frequency analysis. Environmetrics, 2011, 22:63-78.
[16]  Genest C, Quessy JF, Rémillard B. Goodness-of-fit procedures for copula model based on the probability integral transformation. Scandinavian Journal of Statistics, 2006, 33(2):337-366.
[17]  Graler B, van den Berg MJ, Vandenberghe S et al. Multivariate return periods in hydrology:a critical and practical review focusing on synthetic design hydrograph estimation. Hydrology and Earth System Sciences, 2013, 17:1281-1296.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133