全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西北太平洋岩石圈有效弹性厚度及其构造意义

DOI: 10.6038/cjg20150217, PP. 542-555

Keywords: 岩石圈有效弹性厚度,挠曲均衡模型,海底地形,重力异常,三维导纳分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文引入滑动窗口导纳技术(MWAT),计算西北太平洋岩石圈有效弹性厚度(Te).首先,基于SIOV15.1海底地形模型,模拟研究了MWAT法计算Te的精度,表明当Te<5km时,误差在±1km以内,当Te≥5km时,相对误差在10%以内.分别采用GEBCO、SIOV15.1和BAT_VGG海底地形模型,构建了西北太平洋Te,通过对获得的洋壳密度参数和实测导纳与模型导纳之差的均方根进行分析,结果表明,BAT_VGG模型更适用于Te计算.西北太平洋Te均值为13.2km,标准差为6.9km,以板块冷却模型为参考,主要分布在150℃~450℃等温线深度范围内.白垩纪和侏罗纪时期岩石圈Te分布在150℃~300℃等温线深度范围内,且未随海山加载时岩石圈年龄增大而增大,说明海山加载时岩石圈年龄不是影响其强度的唯一因素.南太平洋超级海隆活动,以及研究区域广泛存在的断裂带构造,都曾对本区域岩石圈演化产生过重要影响,可能是本地区岩石圈Te较小的构造原因.

References

[1]  Davis A S, Gray L B, Clague D A, et al. 2002. The Line Islands revisited: New 40Ar/39Ar geochronologic evidence for episodes of volcanism due to lithospheric extension. Geochem. Geophys. Geosyst., 3(3): 1-28, doi: 10.1029/2001GC000190.
[2]  Wessel P, Lyons S. 1997. Distribution of large pacific seamounts from Geosat/ERS-1: Implications for the history of intraplate volcanism. J. Geophys. Res., 102(B10): 22459-22475.
[3]  Wessel P. 2001. Global distribution of seamounts inferred from gridded Geosat/ERS-1 altimetry. J. Geophys. Res., 106(B9): 19431-19441.
[4]  Yang T, Fu R S, Huang J S. 2012. On the inversion of effective elastic thickness of the lithosphere with Moho relief and topography data. Chinese Journal of Geophysics (in Chinese), 55(11): 3671-3680, doi: 10.6038/j.issn.0001-5733.2012.11.014.
[5]  Yang T, Fu R S, Huang J S. 2013. Effective elastic thickness of continental lithosphere in China with Moho topography admittance method. Chinese Journal of Geophysics (in Chinese), 56(6): 1877-1886, doi:10.6038/cjg20130610.
[6]  Yuan B Q, Poudjom Djomani Y H, Wang P, et al. 2002. Effective lithospheric elastic thickness of Southeastern part of Arctic Ocean-Eurasia Continent-Pacific Ocean Geoscience Transect. Earth Science-Journal of China University of Geosciences (in Chinese), 27(4): 397-402.
[7]  Zhang J B, Jin X L, Gao J Y, et al. 2006. Influence on the seamounts'' formation in MPM and WPSP from fractures and Cretaceous magma''s activities. Marine Geology & Quaternary Geology (in Chinese), 26(1): 67-74.
[8]  Zhao L H, Jiang X D, Jin Y, et al. 2004. Effective elastic thickness of continental lithosphere in Western China. Earth Science-Journal of China University of Geosciences (in Chinese), 29(2): 183-189.
[9]  Zhao L H, Gao J Y, Jin X L, et al. 2005. Research on drifting history and tectonic origin of the Mid-Pacific Mountains. Marine Geology & Quaternary Geology (in Chinese), 25(3): 35-42.
[10]  Zhao L H, Jin X L, Gao J Y, et al. 2010. The effective elastic thickness of lithosphere in the Mid-west Pacific and its geological significance. Earth Science (Journal of China University of Geosciences) (in Chinese), 35(4): 637-644.
[11]  Zheng Y, Li Y D, Xiong X. 2012. Effective lithospheric thickness and its anisotropy in the North China Craton. Chinese Journal of Geophysics (in Chinese), 55(11): 3576-3590, doi:10.6038/j.issn.0001-5733.2012.11.007.
[12]  Zhou H. 1997. Research on the lithospheric effective elastic thickness and dynamics of the primary shear zones in the Western Kunlun mountains (in Chinese). Beijing: The Institute of Geology, Chinese Academy of Sciences.
[13]  Calmant S. 1987. The elastic thickness of the lithosphere in the Pacific Ocean. Earth Planet. Sci. Lett., 85(1-3): 277-288.
[14]  Calmant S, Francheteau J, Cazenave A. 1990. Elastic layer thickening with age of the oceanic lithosphere: a tool for prediction of the age of volcanoes or oceanic crust. Geophys. J. Int., 100(1): 59-67.
[15]  Caplan-Auerbach J, Duennebier F, Ito G. 2000. Origin of intraplate volcanoes from guyot heights and oceanic paleodepth. J. Geophys. Res., 105(B2): 2679-2697.
[16]  Chu F Y, Chen J L, Ma W L, et al. 2005. Petrologic characteristics and ages of basalt in middle Pacific Mountains. Marine Geology & Quaternary Geology (in Chinese), 25(4): 55-59.
[17]  Clouard V, Bonneville A. 2005. Ages of seamounts, islands and plateaus on the Pacific plate. GSA Special Papers, 388: 71-90.
[18]  Divins D L. 2003. Total Sediment Thickness of the World''s Oceans & Marginal Seas. NOAA National Geophysical Data Center. Washington: NASA.
[19]  Farrar E, Dixon J M. 1981. Early tertiary rupture of the Pacific plate: 1700 km of dextral offset along the Emperor trough-Line Islands lineament. Earth Planet Sci. Lett., 53(3): 307-322.
[20]  Forsyth D W. 1985. Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res., 90(B14): 12623-12632.
[21]  Fu Y T. 2000. Preliminary research on the lithospheric effective elastic thickness of Dabie Mountain. Beijing: Institute of Geology and Geophysics, Chinese Academy of Sciences.
[22]  Fu Y T, Li J L, Zhou H, et al. 2000. Comments on the effective elastic thickness of continental lithosphere. Geological Review (in Chinese), 46(2): 149-159.
[23]  Fu Y T, Li A C, Qin Y S. 2002. Effective elastic thickness of the oceanic and continental marginal lithospheres. Marine Geology & Quaternary Geology (in Chinese), 22(3): 69-75.
[24]  Goodwillie A M, Watts A B. 1993. An altimetric and bathymetric study of elastic thickness in the central Pacific ocean. Earth Planet. Sci. Lett., 118(1-4): 311-326.
[25]  Goodwillie A M. 2008. User guide to the GEBCO one minute grid. (http://www.gebco.net).
[26]  Hu M Z, Li J C, Li H, et al. 2014a. 3D admittance analysis for gravity isostasy on Shatsky Rise. Journal of Geodesy and Geodynamics (in Chinese), 34(2): 14-18.
[27]  Hu M Z, Li J C, Xing L L. 2014b. Global bathymetry model predicted from vertical gravity gradient anomalies. Acta Geodaetica et Cartographica Sinica (in Chinese), 43(6): 558-565, 574.
[28]  Jiao S Q, Jin Z M. 1996. Effective elastic thickness of continental lithosphere and its geodynamical significance. Geological Science and Technology Information (in Chinese), 15(2): 8-12.
[29]  Kalnins L M, Watts A B. 2009. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth Planet. Sci. Lett., 286(1): 89-100, doi: 10.1016/j.epsl.2009.06.018.
[30]  Li Y D, Zheng Y, Xiong X, et al. 2013. Lithospheric effective elastic thickness and its anisotropy in the northeast Qinghai-Tibet plateau. Chinese Journal of Geophysics (in Chinese), 56(4): 1132-1145, doi: 10.6038/cjg20130409.
[31]  Liu B H, Liu Z C, Wang S G. 1998. Preliminary study on the compensation model of submarine topography in the Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 18(4): 29-34.
[32]  Luis J F, Miranda J M, Galdeano A, et al 1998. Constraints on the structure of the Azores spreading center from gravity data. Mar. Geophys. Res., 20(3): 157-170.
[33]  Luis J F, Neves M C. 2006. The isostatic compensation of Azores Plateau: a 3D admittance and coherence analysis. Journal of Volcanology and Geothermal Research, 156(1-2): 10-22.
[34]  Lyons S N, Sandwell D T, Smith W H F. 2000. Three-dimensional estimation of elastic thickness under the Louisville Ridge. J. Geophys. Res., 105(B6): 13239-13252.
[35]  Müller R D, Sdrolias M, Gaina C, et al. 2008. Age, spreading rates, and spreading asymmetry of the word''s ocean crust. Geochem. Geophys. Geosyst., 9(4), doi: 10.1029/2007GC001743.
[36]  McNutt M. 1979. Compensation of oceanic topography: An application of the response function technique to Surveyor area. J. Geophys. Res., 84(B13): 7589-7598.
[37]  McNutt M. 1990. Flexure reveals great depth. Nature, 343(6259): 596-597.
[38]  Mei S, Suzuki M A, Kohlstedt D L, et al. 2010. Experimental constraints on the strength of the lithospheric mantle. J. Geophys. Res., 115(B8), doi: 10.1029/2009 JB006873.
[39]  Nakanishi M. 1993. Topographic expression of five fracture zones in the northwestern Pacific Ocean. //Pringle M S, Sager W W, Sliter W V, et al. The Mesozoic Pacific: Geology, Tectonics and volcanism. USA, John Wiley & Sons, Inc, 77: 121-136.
[40]  Parker R L. 1973. The rapid calculation of potential anomalies. Geophys. J. R. Astr. Soc., 31(4): 447-455.
[41]  Parsons R L, Sclater J G. 1977. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res., 82(5): 803-827.
[42]  Sandwell D T, MacKenzie K R. 1989. Geoid height versus topography for oceanic plateaus and swells. J. Geophys. Res., 94(B6): 7403-7418.
[43]  Sandwell D T, Smith W H F. 2009. Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. J. Geophys. Res., 114(B1), doi: 10.1029/2008JB006008.
[44]  Schlanger S O, Garcia M O, Keating B H, et al. 1984. Geology and geochronology of the line islands. J. Geophys. Res., 89(B13): 11261-11272.
[45]  Sharp W D, Clague D A. 2006. 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific plate motion. Science, 313(5791): 1281-1284.
[46]  Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956-1962.
[47]  Stein C A, Stein S. 1992. A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature, 359(6391): 123-131.
[48]  Su D Q. 2012. A study of the effective elastic thickness of the oceanic lithosphere. Chinese Journal of Geophysics (in Chinese), 55(10): 3259-3265, doi: 10.6038/j.issn.0001-5733.2012.10.008.
[49]  Walcott R I. 1976. Lithospheric flexure, analysis of gravity anomalies, and the propagation of seamount chains. //Sutton G H, Manghnani M H, Moberly R, et al. eds. The Geophysics of Pacific Ocean Basin and Its Margin. Geophysical Monograph 19: Washington DC, American Geophysical Union, 431-438.
[50]  Wang Y M. 2000. Predicting bathymetry from the earth''s gravity gradient anomalies. Marine Geodesy, 23(4): 251-258.
[51]  Watts A B, Cochran J R. 1974. Gravity anomalies and flexure of the lithosphere along the Hawaiian-Emperor seamount chain. Geophys. J. Int., 38(1): 119-141.
[52]  Watts A B. 1978. An analysis of isostasy in the world''s oceans: 1. Hawaiian-Emperor seamount chain. J. Geophys. Res., 83(B12): 5989- 6004.
[53]  Watts A B, ten Brink U S. 1989. Crustal structure, flexure and subsidence history of the Hawaiian Islands. J. Geophys. Res., 94(B8): 10473-10500.
[54]  Watts A B. 1994. Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary Islands. Geophys. J. Int., 119(2): 648-666.
[55]  Watts A B, Zhong S. 2000. Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int., 142(3): 855-875.
[56]  Watts A B. 2001. Isostasy and flexure of the lithosphere. Cambridge: Cambridge University Press.
[57]  Watts A B, Sandwell D T, Smith W H F, et al. 2006. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J. Geophys. Res., 111(B8), doi: 10.1029/2005JB004083.
[58]  Watts A B, Zhong S, Hunter J. 2013. The behavior of the lithosphere on seismic to geologic timescales. Annu. Rev. Earth Planet. Sci., 41: 443-468.
[59]  Wessel P. 1993. A Reexamination of the flexural deformation beneath the Hawaiian Islands. J. Geophys. Res., 98(B7): 12177-12190.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133