全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

球坐标系下多震相走时三参数同时反演成像

DOI: 10.6038/cjg20151016, PP. 3627-3638

Keywords: 球坐标系,分区多步不规则最短路径算法,多震相走时,三参数同时反演,子空间法

Full-Text   Cite this paper   Add to My Lib

Abstract:

球坐标系下多震相走时三参数(速度、震源位置和反射界面)同时反演需要解决两个关键问题:(1)球坐标系下3D速度模型中多次透射、反射(折射)及转换波精确、快速的射线追踪;(2)同时反演时三种不同参数间的强耦合问题.为此,我们将直角坐标系下分区多步不规则最短路径算法推广至球坐标系中,进行区域或者全球尺度的多震相射线追踪.然后将其与适合多参数同时反演的子空间算法相结合,形成一种球坐标系下联合多震相走时三参数同时反演的方法技术.与双参数(速度和反射界面或速度和震源位置)同时反演的数值模拟对比分析显示:三参数与双参数的同时反演结果大体接近,并且它们对到时数据中可容许的随机噪声不太敏感.结果说明本文中的同时反演成像为一种提高成像分辨率,同时反演速度、震源位置和反射界面的有效方法.

References

[1]  Aki K, Lee W H K. 1976. Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. J. Geophys. Res., 81(23): 4381-4399.
[2]  Bai C-Y, Greenhalgh S. 2005. 3-D non-linear travel-time tomography: Imaging high contrast velocity anomalies. Pure Appl. Geophys., 162(1): 2029-2049.
[3]  Bai C Y, Huang G J, Zhao R. 2010. 2-D/3-D irregular shortest-path ray tracing for multiple arrivals and its applications. Geophys. J. Int., 183(3): 1596-1612.
[4]  Bai C Y, Huang G J, Li Z S. 2011. Simultaneous inversion combining multiple-phase travel times within 3D complex layered media. Chinese J. Geophys. (in Chinese), 54(1): 182-192, doi: 10.3969/j.issn.0001-5733.2011.01.019.
[5]  Bijwaard H, Spakman W. 1999. Fast kinematic ray tracing of first- and later-arriving global seismic phase. Geophys. J. Int., 139(2): 359-369.
[6]  De Kool M, Rawlinson N, Sambridge M. 2006. A practical grid-based method for tracking multiple refraction and reflection phases in three-dimensional heterogeneous media. Geophys. J. Int., 167(1): 253-270.
[7]  Grand S P, Van der Hilst R D, Widiyantoro S. 1997. Global seismic tomography: A snapshot of convection in the Earth. GSA Today, 7(4): 1-7.
[8]  Huang G J, Bai C Y. 2010. Simultaneous inversion with multiple traveltimes within 2-D complex layered media. Chinese J. Geophys. (in Chinese), 53(12): 2972-2981, doi: 10.3969/j.issn.0001-5733.2010.12.021.
[9]  Huang G J, Bai C Y, Greenhalgh S. 2013. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model. Geophys. J. Int., 194(3): 1878-1892.
[10]  Huang G J, Bai C Y. 2013. Simultaneous inversion of three model parameters with multiple classes of arrival times. Chinese J. Geophys. (in Chinese), 56(12): 4215-4225, doi: 10.6038/cjg20131224.
[11]  Kennett B L N, Sambridge M S, Williamson P R. 1988. Subspace methods for large inverse problems with multiple parameter classes. Geophys. J. Int., 94(2): 237-247.
[12]  Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the earth from traveltimes. Geophys. J. Int., 122(1): 108-124.
[13]  Klime? L, Kvasnika M. 1994. 3-D network ray tracing. Geophys. J. Int., 116(3): 726-738.
[14]  Moser T J. 1991. Shortest path calculation of seismic rays. Geophysics, 56(1): 59-67.
[15]  Preston L A. 2003. Simultaneous inversion of 3D velocity structure, hypocenter locations, and reflector geometry in Cascadia. Washington: University of Washington.
[16]  Preston L A, Creager K C, Grosson R S, et al. 2003. Intraslab earthquakes: Dehydration of the Cascadia slab. Science, 302(5648): 1197-1200.
[17]  Rawlinson N, Sambridge M. 2004. Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics, 69: 1338-1350.
[18]  Rawlison N, Sambridge M S. 2003. Seismic traveltime tomography of the crust and lithosphere. Advances in Geophysics, 46: 81-198.
[19]  Sambridge M S. 1990. Non-linear arrival time inversion: Constraining velocity anomalies by seeking smooth models in 3-D. Geophys. J. Int., 102(3): 653-677.
[20]  Sambridge M S, Kennett B L N. 1990. Boundary value ray tracing in a heterogeneous medium: A simple and versatile algorithm. Geophys. J. Int., 101(1): 157-168.
[21]  Snoke J A, Lahr J C. 2001. Locating earthquakes: At what distance can the earth no longer be treated as flat? Seism. Res. Lett., 72(5): 538-541.
[22]  Su W J, Woodward R L, Dziewonski A M. 1994. Degree 12 model of shear velocity heterogeneity in the mantle. J. Geophys. Res., 99(B4): 6945-6980.
[23]  Tang X P, Bai C Y. 2009a. Multiple ray tracing in 2D layered media with the shortest path method. Progress in Geophysics (in Chinese), 24(6): 2087-2096, doi: 10.3969/j.issn.1004-2903.2009.06.022.
[24]  Tang X P, Bai C Y. 2009b. Multiple ray tracing within 3-D layered media with the shortest path method. Chinese J. Geophys. (in Chinese), 52(10): 2635-2643, doi: 10.3969/j.issn.0001-5733.2009.10.024.
[25]  Tian Y, Huang S H, Nolet G, et al. 2007. Dynamic ray tracing and traveltime corrections for global seismic tomography. J. Comp. Phys., 226(1): 672-687.
[26]  Van der Hilst R D, Widiyantoro S, Engdahl E R. 1997. Evidence for deep mantle circulation from global tomography. Nature, 386(6625): 578-584.
[27]  Vidale J E. 1998. Finite-difference calculation of travel times. Bull. Seism. Soc. Am., 78(6): 2062-2076.
[28]  Vidale J E. 1990. Finite-difference calculation of traveltimes in three dimensions. Geophysics, 55(5): 521-526.
[29]  Zhao D P, Hasegawa A, Horiuchi S. 1992. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res., 97(B13): 19909-19928.
[30]  Zhao D P, Lei J S. 2004. Seismic ray path variations in a 3D global velocity model. Phys. Earth Planet. Inter., 141(3): 153-166.
[31]  Zhao D P, Todo S, Lei J S. 2005. Local earthquake reflection tomography of the Landers aftershock area. Earth Planet. Sci. Lett., 235(3-4): 623-631.
[32]  Zhao R, Bai C Y. 2010. Fast multiple ray tracing within complex layered media: The shortest path method based on irregular grid cells. Acta Seismologica Sinica (in Chinese), 42(4): 433-444.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133