全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
大气科学  2011 

巨核对暖云降水影响的模拟研究

DOI: 10.3878/j.issn.1006-9895.2011.05.13

Keywords: 暖云降水巨核模式

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用耦合了新的暖云参数化方案的中尺度模式(MM5),研究了暖云降水中巨核的作用。在这个暖云方案里,先假定一个三模态的气溶胶正态对数分布,然后考虑对流、扩散、云滴和雨滴的核化(非核化)过程,再由气溶胶质量的预报量显式地计算出气溶胶的数浓度。选择了华北地区2005年6月25~26日的一次弱冷锋过程,并以此研究了巨核对云和降水的影响。研究表明,巨核具有增强雨滴的凝结、碰并和云雨自动转化过程的作用,使得云滴数减少高达40%,云水减少达20%,云滴有效半径增加高达30%左右。在污染和清洁环境下巨核均可增加降水。

References

[1]  Eagan R C;Hobbs P V;Radke L F,Measurements of cloud condensation nuclei and cloud droplet size distributions in the vicinity of forest fires,Journal of Applied Meteorology,1974.
[2]  Rudich Y;Khersonsky O;Rosenfeld D,Treating clouds with a grain of salt,Geophysical Research Letters,2002.
[3]  Chen J-P;Lamb D,Simulation of cloud microphysical and chemical processes using a multicomponent framework.Part Ⅱ:Microphysical evolution of a wintertime orographic cloud,Journal of the Atmospheric Sciences,1999.
[4]  Khain, A ;Pokrovsky, A ;Pinsky, M ;Seifert, A ;Phillips, V,Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications,Journal of the Atmospheric Sciences?,2004, 61(24).
[5]  Johnson D B,The role of giant and ultragiant aerosol particles in warm rain initiation,Journal of the Atmospheric Sciences,1982.
[6]  Johnson D B,The role of coalescence nuclei in warm rain initiation,美国:芝加哥大学,1979.
[7]  Eagan R C;Hobbs P V;Radke L F,Particle emissions from a large Kraft paper mill and their effects on the microstructure of warm clouds,Journal of Applied Meteorology,1974.
[8]  Dudhia J,Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,Journal of the Atmospheric Sciences,1989.
[9]  WILLIAM A. COOPER ;ROELOF T. BRUINTJES ;GRAEME K. MATHER,Calculations Pertaining to Hygroscopic Seeding with Flares,Journal of Applied Meteorology?,1997, 36(11).
[10]  Mather G K;Terblanche D E;Steffens F E Results of the South African cloud seeding experiments using hygroscopic flares [J] 1997 doi:10.1175/1520-0450(1997)036<1433:ROTSAC>2.0.CO;2
[11]  Lin Y-L;Farley R D;Orville H D Bulk parameterization of the snow field in a cloud model [J] 1983 doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2
[12]  Lee I Y,Comparison of cloud microphysics parameterizations for simulations of mesoscale clouds and precipitation,Atmospheric Environment,1992.
[13]  Lee I Y,Evaluation of cloud microphysics parameterizations for mesoscale simulations,Atmospheric Research,1989.
[14]  Borys RD. ;Lowenthal DH. ;Cohn SA. ;Brown WOJ.,Mountaintop and radar measurements of anthropogenic aerosol effects on snow growth and snowfall rate - art. no. 1538,Geophysical Research Letters?,2003, 30(10).
[15]  Ghan S J;Guzman G;Abdul-Razzak H Competition between sea salt and sulfate particles as cloud condensation nuclei [J] 1998 doi:10.1175/1520-0469(1998)055<3340:CBSSAS>2.0.CO;2
[16]  Graham Feingold ;William R. Cotton ;Sonia M. Kreidenweis ;Janel T. Davis,The Impact of Giant Cloud Condensation Nuclei on Drizzle Formation in Stratocumulus: Implications for Cloud Radiative Properties,Journal of the Atmospheric Sciences?,1999, 56(24).
[17]  FangWen;Zheng G G;Wang W C,A modeling study of aerosol effects on cloud radiative property and precipitation,Chinese Science Bulletin,2010(15).
[18]  房文,气溶胶对云和降水影响的研究,南京:南京信息工程大学,2008.
[19]  Borys RD. ;Mitchell DL. ;Lowenthal DH.,The relationships among cloud microphysics, chemistry, and precipitation rate in cold mountain clouds,Atmospheric Environment?,2000, 34(16).
[20]  Yin Y;Levin Z;Reisin T,Seeding convective clouds with hygroscopic flares;Numerical simulations using a cloud model with detailed microphysics,Journal of Applied Meteorology,2000.
[21]  Wurzler S. ;Levin Z. ;Reisin TG.,Modification of mineral dust particles by cloud processing and subsequent effects on drop size distributions,Journal of geophysical research?,2000, 105(D4).
[22]  Chen J-P;Lamb D,Simulation of cloud microphysical and chemical processes using a multicomponent framework.Part Ⅰ:Description of the microphysical model,Journal of the Atmospheric Sciences,1994.
[23]  Woodcock A H;Duce R A;Moyers J L Salt particles and raindrops in Hawaii [J] 1971 doi:10.1175/1520-0469(1971)028<1252:SPARIH>2.0.CO;2
[24]  Whitby K T,The physical characteristics of sulfur aerosols,Atmospheric Environment,1978.
[25]  Takahashi T,Hail in an axisymmetric cloud model,Journal of the Atmospheric Sciences,1976.
[26]  Saleeby S M;Cotton W R A large-droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS).Part Ⅱ:Sensitivity to a Colorado winter snowfall event [J] 2005 doi:10.1175/JAM2312.1
[27]  Chen J-P;Liu S-T,Physically based two-moment bulk water parameterizations for warm cloud microphysics,Quarterly Journal of the Royal Meteorological Society,2004.
[28]  Hong S-Y;Pan H-L Nonlocal boundary layer vertical diffusion in a medium-range forecast model [J] 1996 doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
[29]  Hindman E E;Hobbs P V;Radke L F Cloud condensation nucleus size distributions and their effects on cloud droplet size distributions [J] 1977 doi:10.1175/1520-0469(1977)034<0951:CCNSDA>2.0.CO;2
[30]  Grell G A Prognostic evaluation of assumptions used by cumulus parameterizations [J] 1993 doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2
[31]  Rosenfeld D;Lahav R;Khain A The role of sea spray in cleansing air pollution over ocean via cloud processes [J] 2002 doi:10.1126/science.1073869

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133