全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

内蒙古达里湖全新世有机碳氮同位素记录与环境演变

, PP. 856-870

Keywords: 达里湖,C/N比值,稳定同位素,水文,生态,东亚夏季风边缘区,全新世

Full-Text   Cite this paper   Add to My Lib

Abstract:

内蒙古中东部的达里湖为一水文封闭型湖泊,位于现今东亚夏季风的北部边缘区,对区域环境变化十分敏感。本文对达里湖沉积中心提取的岩芯(DL04沉积岩芯)顶部8.5m沉积物进行了有机地球化学分析。15个全岩样品有机质的放射性碳测年结果表明:岩芯顶部8.5m涵盖了过去大约11500年。按约50年分辨率分析的225个总有机碳(TOC)、总氮(TN)含量、总有机碳/总氮(C/N)原子比值数据以及221个有机碳和有机氮稳定同位素(δ13C和δ15N)数据,详细揭示了全新世东亚夏季风边缘区的水文和生态变化历史。在距今11500~9800日历年(cal.aB.P.)期间,所有地球化学指标均呈逐渐增大趋势,指示入湖河流逐渐增强,达里湖开始扩张,水生植物生产率逐渐升高;在9800~7700cal.aB.P.期间,TOC和TN含量以及C/N比值维持稳定高值,δ13C和δ15N值较小,指示湖泊维持高湖面状态,陆源输入和浮游植物生产率较高;在7700~5900cal.aB.P.期间,C/N比值和δ15N维持低值,TOC和TN含量呈现更高值,并且波动变化,δ13C值逐渐增大,表明湖面维持高水平,湖水显著变暖,浮游植物生产率显著升高,流域植被大幅度扩张;在5900~4850cal.aB.P.期间,TOC和TN含量,C/N比值以及δ13C值显著减小,δ15N值显著增大,暗示地表径流显著减弱,达里湖湖面显著下降,湖泊生产率快速下降;从4850cal.aB.P.开始,TOC和TN含量以及C/N比值呈逐渐减小趋势,δ13C和δ15N值呈逐渐增大趋势,表明湖面逐渐下降,湖水盐度、碱度升高,湖水可能变冷,湖泊生产率逐渐下降,流域植被收缩。全新世东亚夏季风边缘区水文和生态环境的变化可能直接或间接受北半球夏季太阳辐射量和区域季风降水强度的共同控制。

References

[1]  1 张家诚, 林之光. 中国气候. 上海: 上海科学技术出版社, 1985. 1~603 Zhang Jiacheng, Lin Zhiguang. Climate of China. Shanghai:Shanghai Scientific and Technical Publishers, 1985. 1~603
[2]  2 中国科学院《中国自然地理》编辑委员会. 中国自然地理——气候. 北京: 科学出版社, 1984. 1~161 Compilatory Commission of Physical Geography of China, Chinese Academy of Sciences. Physical Geography of China:Climate. Beijing:Science Press, 1984. 1~161
[3]  3 An Zhisheng. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 2000, 19 (1~5):171~187, doi:10.1016/S0277-3791(99)00060-8
[4]  4 Zhang Xiaoye, Gong Sunling, Zhao Tianliang et al. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophysical Research Letters, 2003, 30 (24):2272, doi:10 .1029/2003GL018206
[5]  5 Kinne S, Pueschel R. Aerosol radiative forcing for Asian continental outflow. Atmospheric Environment, 2001, 35 (30):5019~5028
[6]  6 Sokolik I N, Winker D M, Bergametti G et al. Introduction to special section:Outstanding problems in quantifying the radiative impacts of mineral dust. Journal of Geophysical Research, 2001, 106 (D16):18015~18027
[7]  8 Jickells T D, An Zhisheng, Andersen K K et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 2005, 308 (5718):67~71
[8]  9 IPCC. Climate Change 2013:The Physical Science Basis. In:Stocker T F, Qin Dahe, Plattner G K et al.eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013. 1~1535
[9]  10 施雅风, 孔昭宸, 王苏民等. 中国全新世大暖期鼎盛阶段的气候与环境. 中国科学(B辑), 1993, 23 (8):865~873 Shi Yafeng, Kong Zhaochen, Wang Sumin et al. The climate and environment during the Holocene Megathermal Maximum in China. Science in China (Series B), 1993, 23 (8):865~873
[10]  11 Kim J H, Schneider R R, Müller P J et al. Interhemispheric comparison of deglacial sea-surface temperature patterns in Atlantic eastern boundary currents. Earth and Planetary Science Letters, 2002, 194 (3~4):383~393
[11]  12 Stott L, Cannariato K, Thunell R et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 2004, 431 :56~59, doi:10.1038/nature02903
[12]  13 孙博亚, 岳乐平, 赖忠平等. 14ka B.P.以来巴里坤湖区有机碳同位素记录及古气候变化研究. 第四纪研究, 2014, 34 (2):418~424 Sun Boya, Yue Leping, Lai Zhongping et al. Paleoclimate change recorded by sediment organic carbon isotopes of Lake Barkol since 14ka B.P.Quaternary Sciences, 2014, 34 (2):418~424
[13]  14 孙伟伟, 沈吉, 张恩楼等. 日本大沼湖沉积物碳氮比值、有机碳同位素特征及其近400年的古气候环境意义. 第四纪研究, 2014, 34 (6):1306~1313 Sun Weiwei, Shen Ji, Zhang Enlou et al. Characteristics of organic stable carbon isotope and C/N ratio of sediments in Lake Onuma, Japan and their environmental implications for the last 400 years. Quaternary Sciences, 2014, 34 (6):1306~1313
[14]  17 Meyers P A, Teranes J L. Sediment organic matter. In:Last W M, Smol J P eds. Tracking Environmental Change Using Lake Sediments, Volume 2:Physical and Geochemical Methods. Dordrect:Kluwer Academic Publishers, 2001. 239~269
[15]  65 Carlson A E, LeGrande A N, Oppo D W et al. Rapid Early Holocene deglaciation of the Laurentide Ice Sheet. Nature Geoscience, 2008, 1 :620~624, doi:10.1038/ngeo285
[16]  66 Peltier W R. On eustatic sea level history:Last Glacial Maximum to Holocene. Quaternary Science Reviews, 2002, 21 (1~3):377~396, doi:10.1016/S0277-3791(01)00084-1
[17]  67 Peltier W R, Fairbanks R G. Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews, 2006, 25 (23~24):3322~3337, doi:10.1016/j.quascirev.2006.04.010
[18]  7 Ridgwell A J. Dust in the Earth system:The biogeochemical linking of land, air and sea. Philosophical Transactions of the Royal Society of London, 2002, 360 (1801):2905~2924
[19]  15 任雅琴, 王彩红, 李瑞博等. 有机质饱和烃和δ 13 Corg. 记录的博斯腾湖早全新世晚期以来生态环境演变. 第四纪研究, 2014, 34 (2):425~433 Ren Yaqin, Wang Caihong, Li Ruibo et al. Ecological environment change recorded by sediment n-alkane and δ 13 Corg. of Lake Bosten since late of Early Holocene. Quaternary Sciences, 2014, 34 (2):425~433
[20]  16 郑茜, 张虎才, 明庆忠等. 泸沽湖记录的西南季风区15000a B.P.以来植被与气候变化. 第四纪研究, 2014, 34 (6):1314~1326 Zheng Qian, Zhang Hucai, Ming Qingzhong et al. Vegetational and environmental changes since 15ka B.P.recorded by Lake Lugu in the southwest monsoon domain region. Quaternary Sciences, 2014, 34 (6):1314~1326
[21]  18 Lamb A L, Leng M J, Mohammed M U et al. Holocene climate and vegetation change in the Main Ethiopian Rift Valley, inferred from the composition(C/N and δ 13 C)of lacustrine organic matter. Quaternary Science Reviews, 2004, 23 (7~8):881~891
[22]  19 Shen Ji, Liu Xingqi, Wang Sumin et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years. Quaternary International, 2005, 136 :131~140, doi:10.1016/j.quaint.2004.11.014
[23]  20 Parplies J, Lücke A, Vos H et al. Late glacial environment and climate development in Northeastern China derived from geochemical and isotopic investigations of the varved sediment record from Lake Sihailongwan(Jilin Province). Journal of Paleolimnology, 2008, 40 :471~487, doi:10.1007/s10933-007-9176-0
[24]  21 Selvaraj K, Wei Kuoyen, Liu Konkee et al. Late Holocene monsoon climate of northeastern Taiwan inferred from elemental(C, N)and isotopic(δ 13 C, δ 15 N)data in lake sediments. Quaternary Science Reviews, 2012, 37 :48~60, doi:10.1016/j.quascirev.2012.01.009
[25]  22 Xiao Jule, Xu Qinghai, Nakamura T et al. Holocene vegetation variation in the Daihai Lake region of north-Central China:A direct indication of the Asian monsoon climatic history. Quaternary Science Reviews, 2004, 23 :1669~1679, doi:10.1016/j.quascirev.2004.01.005
[26]  23 Xiao Jule, Si Bin, Zhai Dayou et al. Hydrology of Dali Lake in central-eastern Inner Mongolia and Holocene East Asian monsoon variability. Journal of Paleolimnology, 2008, 40 :519~528, doi:10.1007/s10933-007-9179-x
[27]  24 Xiao Jule, Chang Zhigang, Wen Ruilin et al. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene, 2009, 19 (6):899~908
[28]  25 李振刚. 克什克腾旗志. 呼和浩特: 内蒙古人民出版社, 1993. 1~1144 Li Zhengang. Annals of Hexigten Banner. Hohhot:People''s Press of Inner Mongolia, 1993. 1~1144
[29]  26 中国植被编辑委员会. 中国植被. 北京: 科学出版社, 1980. 932~955 Compilatory Commission of Vegetation of China. Vegetation of China. Beijing:Science Press, 1980. 932~955
[30]  27 王苏民, 窦鸿身. 中国湖泊志. 北京: 科学出版社, 1998. 1~580 Wang Sumin, Dou Hongshen. Annals of Lakes in China. Beijing:Science Press, 1998. 1~580
[31]  28 Nakamura T, Niu E, Oda H et al. The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research, 2000, B172 (1):52~57, doi:10.1016/S0168-583X(00)00398-0
[32]  29 Bronk Ramsey C. Development of the radiocarbon calibration program. Radiocarbon, 2001, 43 (2A):355~363
[33]  30 Reimer P J, Baillie M G L, Bard E et al. Intcal04 terrestrial radiocarbon age calibration, 0~26cal kyr BP. Radiocarbon, 2004, 46 (3):1029~1058
[34]  31 Wu Y H, Wang S M, Zhou L P. Possible factors causing older radiocarbon age for bulk organic matter in sediment from Daihai Lake, North China. Radiocarbon, 2011, 53 (2):359~366
[35]  32 Meyers P A. Impacts of Late Quaternary fluctuations in water level on the accumulation of sedimentary organic matter in Walker Lake, Nevada. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 78 (3~4):229~240
[36]  33 Talbot M R, Johannessen T. A high resolution palaeoclimatic record for the last 27500 years in tropical West Africa from the carbon and nitrogen isotopic composition of lacustrine organic matter. Earth and Planetary Science Letters, 1992, 110 (1~4):23~37, doi:10 .1016/0012-821X(92)90036-U
[37]  34 Meyers P A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 1994, 114 (3~4):289~302, doi:10 .1016/0009-2541(94)90059-0
[38]  35 H?kanson L, Jansson M. Principles of Lake Sedimentology. Berlin:Springer, 1983. 1~316
[39]  36 Cohen A S. Paleolimnology:The History and Evolution of Lake Systems. Oxford:Oxford University Press, 2003. 1~500
[40]  37 O''Leary M H. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20 (4):553~567
[41]  38 O''Leary M H. Carbon isotopes in photosynthesis. BioScience, 1988, 38 (5):328~336
[42]  39 Farquhar G D, O''Leary M H, Berry J A. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 1982, 9 (2):121~137, doi:10.1071/PP9820121
[43]  40 Wang Guo''an, Han Jiamao, Liu Dongsheng. The carbon isotope composition of C3 herbaceous plants in loess area of Northern China. Science in China (Series D), 2003, 46 (10):1069~1076, doi:10.1360/03yd0384
[44]  41 Liu Weiguo, Feng Xiahong, Ning Youfeng et al.δ 13 C variation of C3 and C4 plants across an Asian monsoon rainfall gradient in arid Northwestern China. Global Change Biology, 2005, 11 (7):1094~1100, doi:10.1111/j.1365-2486.2005.00969.x
[45]  42 Wu Jinglu, Huang Chengmin, Zeng Hai''ao et al. Sedimentary evidence for recent eutrophication in the northern basin of Lake Taihu, China:Human impacts on a large shallow lake. Journal of paleolimnology, 2007, 38 (1):13~23, doi:10.1007/s10933-006-9058-x
[46]  43 Wang Luo, Mackay A W, Leng M J et al. Influence of the ratio of planktonic to benthic diatoms on lacustrine organic matter δ 13 C from Erlongwan Maar Lake, Northeast China. Organic Geochemistry, 2013, 54 :62~68, doi:10.1016/j.orggeochem.2012.09.010
[47]  44 Liu Weiguo, Li Xiangzhong, An Zhisheng et al. Total organic carbon isotopes:A novel proxy of lake level from Lake Qinghai in the Qinghai-Tibet Plateau, China. Chemical Geology, 2013, 347 :153~160, doi:10.1016/j.chemgeo.2013.04.009
[48]  45 Hinga K R, Arthur M A, Pilson M E Q et al. Carbon isotope fractionation by marine phytoplankton in culture:The effects of CO2 concentration, pH, temperature, and species. Global Biogeochemical Cycles, 1994, 8 (1):91~102, doi:10.1029/93GB03393
[49]  46 Talbot M R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, 1990, 80 (4):261~279, doi:10 .1016/0168-9622(90)90009-2
[50]  47 Talbot M R, L?rdal T. The Late Pleistocene-Holocene palaeolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. Journal of Paleolimnology, 2000, 23 (2):141~164, doi:10.1023/A:1008029400463
[51]  48 Li Hongchun, Ku Tehlung. δ 13 C-δ 18 O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 133 (1):69~80, doi:10.1016/S0031-0182(96)00153-8
[52]  49 Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 2004, 23 :811~831, doi:10.1016/j.quascirev.2003.06.012
[53]  50 Calder J A, Parker P L. Geochemical implications of induced changes in 13 C fractionation by blue-green algae. Geochimica et Cosmochimica Acta, 1973, 37 :133~140, doi:10 .1016/0016-7037(73)90251-2
[54]  51 Pardue J W, Scalan R S, Van Baalen C et al. Maximum carbon isotope fractionation in photosynthesis by blue-green algae and a green alga. Geochimica et Cosmochimica Acta, 1976, 40 :309~312, doi:10 .1016/0016-7037(76)90208-8
[55]  52 Smith F A, Walker N A. Photosynthesis by aquatic plants:Effects of unstirred layers in relation to assimilation of CO2 and HCO-3 and to carbon isotopic discrimination. New Phytologist, 1980, 86 (3):245~259, doi:10.1111/j.1469-8137.1980.tb00785.x
[56]  53 Lucas W J. Photosynthetic assimilation of exogenous HCO-3 by aquatic plants. Annual Review of Plant Physiology, 1983, 34 :71~104, doi:10.1146/annurev.pp.34.060183.000443
[57]  54 Mook W G, Bommerson J C, Staverman W H. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science Letters, 1974, 22 (2):169~176, doi:10 .1016/0012-821X(74)90078-8
[58]  55 Collister J W, Hayes J M. A preliminary study of the carbon and nitrogen isotope biogeochemistry of lacustrine sedimentary rocks from the Great River Formation, Wyoming, Utah and Colorado. United States Geological Survey Bulletin, 1991, 1973-A-G :C1~C16
[59]  56 Wada E, Hattori A. Nitrogen isotope effects in the assimilation of inorganic nitrogenous compounds by marine diatoms. Geomicrobiology Journal, 1978, 1 (1):85~101
[60]  57 Fran?ois R, Pilskaln C H, Altabet M A. Seasonal variation in the nitrogen isotopic composition of sediment trap materials collected in Lake Malawi. In:Johnson T C, Odada E O eds. The Limnology, Climatology and Paleoclimatology of the East African Lakes. Amsterdam:Gordon and Breach, 1996. 241~250
[61]  58 Peters K E, Sweeney R E, Kaplan I R. Correlation of carbon and nitrogen stable isotope ratios in sedimentary organic matter. Limnology and Oceanography, 1978, 23 (4):598~604
[62]  59 Peterson B J, Howarth R W. Sulfur, carbon, and nitrogen isotopes used to trace organic flow in the salt-marsh estuaries of Sapelo Island, Georgia. Limnology and Oceanography, 1987, 32 (6):1195~1213
[63]  60 Hecky R E, Kling H J. The phytoplankton and protozooplankton of the euphotic zone of Lake Tanganyika:Species composition, biomass, chlorophyll content, and spatio-temporal distribution. Limnology and Oceanography, 1981, 26 (3):548~564, doi:10.4319/lo.1981.26.3.0548
[64]  61 Hecky R E, Kling H J. Phytoplankton ecology of the great lakes in the rift valleys of Central Africa. Ergebnisse der Limnologie, 1987, 25 :197~228
[65]  62 Arthur M A, Anderson T F, Kaplan I R et al. Stable isotopes in sedimentary geology. SEPM Short Course, 1983, 10 :1~435
[66]  63 Laskar J, Robutel P, Joutel F et al. A long term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 2004, 428 :261~285, doi:10 .1051/0004-6361:20041335
[67]  64 Dyke A S, Moore A, Roberson L. Deglaciation of North America. Geological Survey of Canada Open File Report, 2003, 1574 :(CD ROM), http://geopub.nrcan.gc. ca/moreinfo_e.php?id=214399

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133