4 Genty D, Baker A, Massault M et al. Dead carbon in stalagmites:Carbonate bedrock paleodissolution vs. ageing of soil organic matter. Implications for 14 C variations in speleothems. Geochimica et Cosmochimica Acta, 2001, 65 (20):3443~3457
[2]
1 Cerling T E, Quade J, Wang Y et al. Carbon isotopes in soil carbonates. Climate Change in Continental Isotopic Records, 1989, 78 :217~231
[3]
2 Coplen T B, Winograd I J, Landwehr J M et al.500000-year stable carbon isotopic record from Devil''s Hole, Nevada. Nature, 1994, 263 (5145):361~365
[4]
3 Bar-Matthews M, Ayalon A, Matthews A et al. Carbon and oxygen isotope study of the active water-carbonate system in the karstic Mediterranean cave:Implications for paleoclimate research in semiarid regions. Geochimica et Cosmochimica Acta, 1996, 60 (2):337~347
[5]
5 Baskaran M, Kishnamurthy R V. Speleothems as proxy for the carbon isotope composition of atmospheric CO2. Geophysical Research Letters, 1993, 20 (24):2905~2908
[6]
6 Tremaine D M, Froelich P N, Wang Y. Speleothem calcite farmed in situ:Modern calibration of δ 18 O and δ 13 C paleoclimate proxies in a continuously monitored natural cave system. Geochimica et Cosmochimica Acta, 2011, 75 (17):4929~4950
[7]
7 Johnson K R, Hu C Y, Belshaw N S et al. Seasonal trace-element and stable-isotope variations in a Chinese speleothem:The potential for high-resolution paleomonsoon reconstruction. Earth and Planetary Science Letters, 2006, 244 (12):394~407
[8]
8 李吉龙, 段武辉, 吴江滢. 安徽蓬莱仙洞不同滴水点差异PCP作用及其古气候记录研究意义. 第四纪研究, 2014, 34 (4):905~906 Li Jilong, Duan Wuhui, Wu Jiangying. Prior calcite precipitation at different drip-water sites in Penglaixian Cave, Anhui Province and the paleoclimatic implications. Quaternary Sciences, 2014, 34 (4):905~906
[9]
9 王世杰, 罗维均, 刘秀明等. 贵州七星洞系统中水文地球化学特征对滴水δ 13 CDIC的影响及其意义. 地学前缘, 2009, 6 (16):67~75 Wang Shijie, Luo Weijun. Liu Xiuming et al. Effects of hydrogeochemistry on δ 13 CDIC values of drip water in Qixing Cave, Guizhou, China and their implications. Earth Science Frontiers, 2009, 16 (6):66~70
[10]
10 罗维均. 喀斯特洞穴系统中稳定同位素地球化学特征及环境意义. 贵阳: 中国科学院地球化学研究所博士论文, 2007. 122 Luo Weijun. Geochemistry Characteristics of Stable Isotopes in Karst Cave Systems and Their Environmental Implications. Guiyang: The Doctoral Dissertation of Institute of Geochemistry, Chinese Academy of Sciences, 2007. 122
[11]
11 张美良, 朱晓燕. 桂林洞穴滴水及现代碳酸钙(CaCO3)沉积的碳同位素记录及其环境意义. 地球学报, 2009, 5 (30):635~642 Zhang Meiliang, Zhu Xiaoyan. Cave dripping water and carbon isotopic records of modern carbonate(CaCO3)deposits:Stalagmite in Panlong Cave of Guilin and its environmental significance. Acta Geoscientica Sinica, 2009, 5 (30):635~642
[12]
12 张美良, 林玉石, 覃嘉铭. 桂林地区44ka 洞穴石笋碳酸钙(盐)δ 13 C的同位素组成与大气CO2 浓度估算. 地球学报, 2001, 22 (5):447~452 Zhang Meiliang, Lin Yushi, Qin Jiaming. The δ 13 C isotopic composition of cave stalagmite carbonate and the estimation of the atmospheric CO2 concentration since 44ka in Guilin area. Acta Geoscientia Sinica, 2001, 22 (5):447~452
[13]
13 张美良, 朱晓燕, 林玉石等. 洞穴滴(流)水的沉积及溶—侵蚀作用——以桂林盘龙洞为例. 中国岩溶, 2007, 26 (4):326~334 Zhang Meiliang, Zhu Xiaoyan, Lin Yushi et al. Drip water deposits and erosion:Dissolution process by drip water in karst cave. Carsologica Sinica, 2007, 26 (4):326~334
[14]
14 李廷勇, 李红春, 向晓晶等. 碳同位素(δ 13 C)在重庆岩溶地区植被—土壤—基岩—洞穴系统运移特征研究. 中国科学: 地球科学, 2012, 42 (4):526~535 Li Tingyong, Li Hongchun, Xiang Xiaojing et al. Transportation characteristics of δ 13 C in the plants-soil-bedrock-cave system in Chongqing karst area. Science China: Earth Sciences, 2012, 42 (4):526~535
[15]
15 李廷勇, 李红春, 李俊云等. 重庆芙蓉洞洞穴沉积物δ 13 C、δ 18 O特征及意义. 地质论评, 2008, 54 (4):712~720 Li Tingyong, Li Hongchun, Li Junyun et al. The δ 13 C and δ 18 O and their significances of speleothems in Furong Cave, Chongqing, China. Geological Review, 2008, 54 (4):712~720
[16]
16 Li T Y, Shen C C, Li H C et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China. Geochimica et Cosmochimica Acta, 2011, 75 (15):4140~4156
[17]
17 李红春, 顾德隆, Stott L D 等. 北京石花洞石笋500年来的δ 13 C记录与古气候变化及大气CO2浓度变化的关系. 中国岩溶, 1997, 16 (4):285~296 Li Hongchun, Ku Tehlung, Stott L D et al. Interannual-resolution δ 13 C record of stalagmites as proxy for the changes in precipitation and atmospheric CO2 in Shihua Cave, Beijing. Carsologica Sinica, 1997, 16 (4):285~296
[18]
18 李红春, 顾德隆, 陈文寄等. 高分辨率洞穴石笋中稳定同位素应用. 地质论评, 1998, 44 (5):456~463 Li Hongchun, Gu Delong, Chen Wenji et al. Application of high-resolution carbon isotope record of a stalagmite from the Shihua Cave, Beijing. Geological Review, 1998, 44 (5):456~463
[19]
19 刘子琦, 李红春, 徐晓梅等. 贵州中西部洞穴水系与碳酸钙的稳定同位素意义. 地质论评, 2007, 53 (2):233~241 Liu Ziqi, Li Hongchun, Xu Xiaomei et al. Stable isotopes of water and carbonate samples from caves in central western Guizhou:Implications of paleoclimate and paleoenvironment. Geological Review, 2007, 53 (2):233~241
[20]
20 Hendy C H. The isotopic geochemistry of speleothems—Ⅰ. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica et Cosmochimica Acta, 1971, 35 (15):801~824
[21]
21 曾成, 刘再华. 建设岩溶水—碳通量大型模拟试验场的构想. 资源环境与工程, 2013, 27 (2):197~221 Zeng Cheng, Liu Zaihua. Ideas of construction of simulation test field of karst water and carbon fluxes. Resources Environment & Engineering, 2013, 27 (2):197~221
23 Jiang Y J, Hu Y, Schirmer M. Biogeochemical controls on daily cycling of hydrochemistry and δ 13 C of dissolved inorganic carbon in a karst spring-fed pool. Journal of Hydrology, 2013, 478 :157~168
[24]
24 Jiang Y J. The contribution of human activities to dissolved inorganic carbon fluxes in a karst underground river system:Evidence from major elements and δ 13 CDIC in Nandong. Journal of Contaminant Hydrology, 2013, 152 :1~11
[25]
25 Rampelbergh M V, Verheyden S et al. Monitoring of a fast-growing speleothem site from the Han-sur-Lesse cave, Belgium, indicates equilibrium, deposition of the seasonal δ 18 O and δ 13 C signals in the calcite. Climate of the Past, 2014, 10 (5):1871~1885
[26]
26 Dreybrodt W, Scholz D. Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems:From soil water to speleothem calcite. Geochimica et Cosmochimica Acta, 2011, 75 (3):734~752