全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

岩石流变学原理在构造成矿研究中的应用――以BIF型富铁矿床为例

, PP. 93-109

Keywords: 构造成矿,岩石流变,条带状铁建造(BIF),高品位富铁矿成因,构造物理化学

Full-Text   Cite this paper   Add to My Lib

Abstract:

根据岩石流变学的基本原理与研究进展及在成矿学中的应用,初步讨论了构造成矿与岩石流变在研究内容、研究目标等方面的一致性问题,并以世界上变质条带状铁建造(BIF)型富铁矿床为例,综合分析了构造变形和岩石流变在该类矿床形成过程中的地位与作用。由于岩石流变行为存在差异,褶皱变形及伴随的韧性剪切和高温塑性流动是高品位BIF型富铁矿床形成的关键。文章指出,深入开展特色和重要矿床的构造物理化学研究将是实现成矿学与岩石流变学有机结合的重要方向,并有可能为创新成矿地质理论、发现一批大型、超大型矿床提供重要依据。

References

[1]  蔡秀成, 温桂兰, 富毓德, 唐荣炳. 1979. 关于弓长岭磁铁矿床形成条件讨论 // 铁矿地质地球化学研究. 中国科学院地球化学研究所参加全国铁矿科学讨论会文集: 62?71.
[2]  陈柏林, 董法宪, 李中坚. 1999. 韧性剪切带型金矿成矿模式. 地质论评, 45(2): 187?190.
[3]  陈衍景. 1996. 陆内碰撞造山体制的流体作用模式及与成矿的关系. 地学前缘, 3(3?4): 282?289.
[4]  陈衍景. 2013. 大陆碰撞成矿理论的创建及应用. 岩石学报, 29(1): 1?27.
[5]  程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153?180.
[6]  金扰. 1997. 我国高温高压实验研究进展和展望. 地球物理学报, 40(增刊): 70?81.
[7]  金振民. 1997. 我国高温高压实验研究进展和展望. 地球物理学报, 40(增刊): 70?81.
[8]  金振民, 姚玉鹏. 2004. 超越板块构造――我国构造地质学要做些什么? 地球科学――中国地质大学学报, 29(6): 644?650.
[9]  冷盛强, 李佩兰. 1979. 海南岛石碌矿区富铁矿形成的物理化学条件实验研究. 中南大学学报, 3: 116?128.
[10]  李德威. 1993. 成矿动力学刍议. 地球科学――中国地质大学学报, 18(4): 407?413.
[11]  李德威, 纪云龙. 2000. 大陆下地壳层流作用及其大陆动力学意义. 地震地质, 22(1): 89?96.
[12]  李鸿业. 1974. 鞍山地区鞍山式铁矿地质特征和成因问题. 地质与勘探, (5): 7?17.
[13]  吕古贤, 林文蔚, 郭涛, 殷秀兰, 舒斌, 郭初笋. 2001. 金矿成矿过程中构造应力场转变与热液浓缩?稀释作用. 地学前缘, 8(4): 253?264.
[14]  吕古贤, 林文蔚, 罗元华, 李晓波, 倪师军, 邓军, 周绍东, 曹志敏, 张均. 1999. 构造物理化学与金矿成矿预测. 北京: 地质出版社: 1?300.
[15]  裴荣富, 翟裕生, 张丰仁. 1999. 深部构造作用与成矿. 北京: 地质出版杜: 1?167.
[16]  彭少梅. 1992. 粤北新洲逆冲推覆构造及金矿成矿系列. 武汉: 中国地质大学出版社: 1?132.
[17]  戚学祥, 李海兵, 张建新, 蔡金郎. 2003. 韧性剪切带的变形变质与同构造熔融作用――以中祁连地块宝库河韧性走滑剪切带为例. 地质论评, 49(4): 413?422.
[18]  邵同宾, 嵇少丞, 王茜. 2011. 部分熔融岩石流变学. 地质论评, 57(6): 851?869.
[19]  沈保丰, 杨春亮, 翟安民, 胡小蝶, 曹秀兰, 宫晓华. 2004. 中国前寒武纪矿床时空分布. 矿床地质, 23(增刊): 62?70.
[20]  沈其韩. 1998. 华北地台早前寒武纪条带状铁英岩地质特征和形成的地质背景 // 程裕祺. 华北地台早前寒武纪研究论文集. 北京: 地质出版社: 1?30.
[21]  孙胜龙. 1995. 韧性剪切带中金成矿机理浅析. 大地构造与成矿学, 19(4): 375?381.
[22]  孙岩, 沈修志, 黄钟瑾, 邓锡秧, 刘寿和. 1984. 层滑断裂与层控矿床――以苏皖南部上古生界的地层为例.地质论评, 30(5): 430?436.
[23]  索书田, 钟增球, 周汉文, 游振东. 2008. 大别?苏鲁区UHP变质岩构造学及流变学演化. 地学前缘, 15(3): 150?167.
[24]  万天丰. 2008. 关于中国构造地质学研究中几个问题的探讨. 地质通报, 27(9): 1441?1450.
[25]  王春增, 李晓峰, 易先奎. 2009. 江西金山金矿控矿韧性剪切带的递进变形成矿机理: 显微构造证据. 桂林工学院学报, 29(2): 169?182.
[26]  王嘉荫. 1978. 应力矿物概论. 北京: 地质出版社: 1?238.
[27]  王永基. 2007. 中国铁矿勘查回顾. 江苏地质, 31(3): 161?164.
[28]  杨晓松, 马瑾, 张先进. 2003. 大陆壳内低速层成因综述. 地质科技情报, 22(2): 35?41.
[29]  杨晓勇. 2005. 论韧性剪切带研究及其地质意义. 地球科学进展, 20(7): 765?771.
[30]  曾庆丰. 1982. 矿田构造发展特征. 地质科学, (1): 47?55.
[31]  曾书明, 周建廷, 王学平, 刘川, 董国臣. 2011. 江西新余铁矿田铁矿成矿地质特征与成因分析. 地质与勘探, 47(2): 187?196.
[32]  曾佐勋, 付永涛. 1997. 利用两种天然构造变形估算岩石古流变参数. 地球科学――中国地质大学学报, 22(4): 391?394.
[33]  翟裕生. 1996. 关于构造?流体?成矿作用研究的几个问题. 地学前缘, 3(3?4): 230?236.
[34]  翟裕生. 2002. 成矿构造研究的回顾和展望. 地质论评, 48(2): 140?146.
[35]  Beukes N J, Gutzmer J and Mukhopadhyay J. 2002. The geology and genesis of high-grade iron ore deposits, Iron Ore 2002. Australasian Institute of Mining and Metallurgy, Perth: 23?29.
[36]  Birkeland A, Ihlen P M and Bjorlykke A. 1993. The sources of metals in sulfide deposits in the Helgeland nappe complex, North-Central Norway: Pb isotope evidence. Economic Geology, 88(7): 1810?1829.
[37]  Ji S C. 2008. Deformation Mechanisms, Rheology, and Seismic Properties of Rocks. Beijing: Geological Publ?ishing House: 1?539.
[38]  Ji S C and Xia B. 2002. Rheology of Polyphase Earth Materials. Polytechnic International Press, Montreal (Canada): 1?260.
[39]  Ji S C and Zhao P L. 1994. Layered rheological structure of subducting oceanic lithosphere. Earth and Planetary Science Letters, 124(1-4): 75?94.
[40]  Jin Z M, Zhang J F, Green H W and Jin S Y. 2002. Rheological properties of deep subducted oceanic lithosphere and their geodynamic implications. Science in China (series D-Earth Sciences), 45(11): 969?977.
[41]  Karato S L and Wu P. 1993. Rheology of the upper?mantle: A synthesis. Science, 260(5109): 771?778.
[42]  Kaufman A J. 1996. Geochemical and mineralogic effects of contact metamorphism on banded iron-formation: An example from the Transvaal Basin, South Africa. Precambrian Research, 79: 171?194.
[43]  Khan R M K and Naqvi S M. 1996. Geology, geochemistry and genesis of BIF of Kushtagi schist belt, Archaean Dharwar Craton, India. Mineralium Deposita, 31: 123?133.
[44]  Kirby S H. 1983. Rheology of the lithosphere. Reviews of Geophysics, 21(6): 1458?1487.
[45]  Powell C M, Oliver N H S, Li Z X, Martin D M and Ronaszecki J. 1999. Synorogenic hydrothermal origin for giant Hamersley iron oxide ore bodies. Geology, 27: 175?178.
[46]  Ramsay J G. 1967. Folding and fracturing of rocks. New York: McGraw-Hill: 1?568.
[47]  Ranalii G. 1997. Rheology of the lithosphere in space and time // Orogeny through time. Geological Society Special Publications, 121: 19?37.
[48]  Ranalli G and Murphy D C. 1987. Rheological stratification of the lithosphere. Tectonophysics, 132(4): 281?295.
[49]  Rasmussen B, Fletcher I R, Muhling J R, Thorne W S and Broadbent G C. 2007. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U?Pb geochronology of hydrothermal xenotime. Earth and Planetary Science Letters, 258(1?2): 249?259.
[50]  Rickard D T, Willdén M Y, Marinder N-E and Donnelly T H. 1979. Studies on the Genesis of the Laisvall Sandstone Lead-Zinc Deposit, Sweden. Economic Geology, 74(5): 1255?1285.
[51]  Storti F, Holdsworth R E and Salvini F. 2003. Intraplate strike-slip deformation belts // Storti F, Holdsworth R E and Salvini F. Intraplate strike-slip deformation belts. Geological Society Special Publications: 210: 1?14.
[52]  Sun H, Wu J, Yu P and Li J. 1998. Geology, geochemistry and sulfur isotope composition of the Late Proterozoic Jingtieshan (Superior-type) hematite-jasper-barite iron ore deposits associated with stratabound Cu mineral?ization in the Gansu Province, China. Minera?lium Dep?osita, 34(1): 102?112.
[53]  Sundblad K and Stephens M B. 1983. Lead isotope system?atics of strata-bound sulfide deposits in the Higher Nappe Complexes of the Swedish Caledonides. Econo?mic Geology, 78(6): 1090?1107.
[54]  Taylor D, Dalstra H J, Harding A E, Broadbent G C and Barley M E. 2001. Genesis of high-grade hematite ore bodies of the Hamersley province, Western Australia. Economic Geology, 96(4): 837?873.
[55]  Travé A, Calvet F, Sans M, Vergé J and Thirlwall M. 2000. Fluid history related to the Alpine compression at the margin of the south-Pyrenean Foreland basin: the El Guix anticline. Tectonophysics, 321(1): 73?102.
[56]  Venera Z, Schulmann K and Kroener A. 2000. Intrusion within a transtensional tectonic domain, the Cista Granodiorite (Bohemian Massif): Structure and rheological modeling. Journal of Strucrural Geology, 2(10): 1437?1454.
[57]  Zhang Z C, Hou T, Santosh M, Li H M, Li J W, Zhang Z H, Song X Y and Wang M. 2014. Spatio-temporal distrib?ution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247?263.
[58]  Zhong Z Q and You Z D. 1995. Compositional variation and volume loss of a shear zone-Hetai shear zone as a case history. Chinese Science Bulletin, 40(19): 1638?1641.
[59]  邓军, 吕古贤, 杨立强, 郭涛, 方云, 舒斌. 1998. 构造应力场转换与界面成矿. 地球学报, 19(3): 244?250.
[60]  邓军, 杨立强, 孙忠实, 彭润民, 陈学明, 杜子图. 2000. 构造体制转换与流体多层循环成矿动力学. 地球科学――中国地质大学学报, 25(4): 397?403.
[61]  范宏瑞, 胡芳芳, 杨进辉, 沈昆, 翟明国. 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317?1328.
[62]  傅昭仁, 李德威, 李先福. 1992. 变质核杂岩及剥离断层的控矿构造解析. 武汉: 中国地质大学出版社: 8?16.
[63]  何绍勋, 段嘉瑞, 刘继顺, 张曾荣. 1996. 韧性剪切带与成矿. 北京: 地震出版社: 1?174.
[64]  侯增谦. 2010. 大陆碰撞成矿论. 地质学报, 84(1): 30?58.
[65]  胡正国, 钱壮志, 阎广民. 1994. 小秦岭拆离变质核杂岩构造与金矿. 西安: 陕西科学技术出版社: 1?238.
[66]  嵇少丞. 1988. 部分熔融的构造地质意义(I): 变形机制转变的实验研究. 地质科学, (4): 347?356.
[67]  嵇少丞, 钟大赉, 许志琴, 夏斌. 2008. 流变学: 构造地质学与地球动力学的支柱学科. 大地构造与成矿学, 32(3): 257?264.
[68]  李纯阳. 1996. 浅谈鞍山式铁矿床的构造控矿作用. 鞍钢矿山, 91(1): 5?8.
[69]  李鸿业, 赵秀德. 1999. 鞍本地区鞍山式铁矿区地质构造. 前寒武纪研究进展, 22(3): 22?29.
[70]  李嘉兴, 姜俊, 胡兴平, 康吉昌, 尹意求. 2003. 新疆富蕴县蒙库铁矿床地质特征及成因分析. 新疆地质, 31(3): 307?311.
[71]  李兆麟, 张文兰, 翟伟, 孙凯, 文拥军. 2004. 韧性剪切带型金矿床矿物中熔融包裹体与矿床成因研究. 矿物岩石地球化学通报, 23(2): 109?111.
[72]  梁新权, 温淑女. 2009. 广东凡口铅锌矿床的走滑构造及成矿模式. 大地构造与成矿学, 33(4): 556?566.
[73]  刘俊来. 2004. 变形岩石的显微构造与岩石圈流变学. 地质通报, 23(9?10): 980?985.
[74]  刘连登, 朱永正, 戴仕炳. 1994. 金矿与韧性剪切带及叠加构造 // 张贻侠和刘连登. 中国前寒武纪矿床和构造. 北京: 地震出版社: 39-78.
[75]  刘肇昌, 刘晓杰. 1991. 成矿构造研究新进展: 推覆构造及其控矿与成矿(第三讲). 矿山地质, 12(3): 232?243.
[76]  吕古贤. 1991. 构造物理化学的初步探讨. 中国区域地质, (3): 254?261.
[77]  吕古贤, 邓军, 李晓波, 倪师军, 郭涛. 2006. 构造物理化学的思路、研究和问题. 地质学报, 80(10): 1616?1626.
[78]  吴学益, 卢焕章, 吕古贤, 王中刚, 胡瑞忠, 陈文一, 朱笑青. 2006. 黔东南锦屏?天柱地区构造控岩控金特征模拟实验及其力学分析. 大地构造与成矿学, 30(3): 355?368.
[79]  吴学益, 钟德义, 梁宁, 王杰, 周文华, 耿建民. 1984. 构造地球化学高温高压模拟试验及其结果. 大地构造与成矿学, 8(3): 251?260.
[80]  许德如, 吴俊, 肖勇, 陈福雄, 王力, 刘朝露, 王智琳. 2011. 海南石碌铁矿床构造变形特征及与铁多金属成矿富集的关系. 地质通报, 30(4): 553?564.
[81]  许德如, 肖勇, 夏斌, 蔡仁杰, 侯威, 王力, 刘朝露, 赵斌. 2009. 海南石碌铁矿床成矿模式与找矿预测. 北京: 地质出版社: 1?331.
[82]  许志琴, 徐惠芬, 张建新, 李海兵, 朱志直, 曲景川, 陈代璋, 陈金禄, 杨开春. 1994. 北祁连走廊南山加里东俯冲杂岩增生地体及其动力学. 地质学报, 68(1): 1?15.
[83]  杨恒, 白武明. 2000. 岩石圈流变实验研究的进展. 地球物理学进展, 15(2): 79?89
[84]  杨开庆. 1986. 动力成岩成矿理论的研究内容和方向 // 中国地质科学院地质力学研究所所刊, 第7号: 1?14
[85]  杨开庆, 董法先, 王建平, 李中坚, 吕古贤, 杨玉东. 1988. 海南石碌矿区铁、金、铜、钴矿构造动力成矿作用的研究 // 中国地质科学院地质力学研究所所刊, 第11号: 83?152.
[86]  余心起, 吴淦国, 张达, 狄永军, 代堰锫, 邱骏挺. 2008. 北武夷地区逆冲推覆构造的特征及其控矿作用. 地质通报, 27(10): 1667?1677.
[87]  翟裕生. 2007. 地球系统、成矿系统到勘查系统. 地学前缘, 14(1): 172?181.
[88]  翟裕生, 邓军, 丁式江, 彭润民, 王建平. 2001. 关于成矿参数临界转换的探讨. 矿床地质, 20(4): 301?306.
[89]  翟裕生, 石准立, 曾庆丰. 1981. 矿田构造与成矿. 北京: 地质出版社: 1?79.
[90]  张开均, 施央申, 黄钟瑾, 王良书. 1996. 逆冲推覆构造最新研究进展评述. 地质与勘探, 32(2): 23?28.
[91]  张秋生, 李守义, 刘连登. 1984. 中国早前寒纪地质及成矿作用. 长春: 吉林人民出版社: 1?536.
[92]  张湘炳. 1992. 论构造成矿规律及其动力学机制. 大地构造与成矿学, 6(2): 113?122.
[93]  张玉清, 王搜, 贾和义, 尚恒胜. 2003. 白云鄂博叠加褶皱及其变形机制. 华南地质与矿产, (1): 23?26.
[94]  张元厚, 李宗彦, 张孝民, 钱明平, 杨志强, 何岳, 张帅民, 张力智, 王建明. 2009. 小秦岭金(钼)矿田北矿带推覆构造演化与成矿作用. 吉林大学学报: 地球科学版, 39(2): 244?254.
[95]  赵斌, 李统锦. 1979. 鞍山弓长岭型磁铁富矿床形成物理化学条件的实验研究 // 铁矿地质地球化学研究. 中国科学院地球化学研究所参加全国铁矿科学讨论会文集: 295?320.
[96]  郑远川, 顾连兴, 汤晓茜, 王子江, 吴昌志, 张文兰, 吴学益. 2009. 天然矿石中硫化物的同构造再活化实验研究. 地质学报, 83(1): 31?42.
[97]  周真恒, 邓万明, 向才英. 1999. 岩石圈流变学研究进展. 地震地质, 21(1): 88?96.
[98]  朱志澄. 1991. 逆冲推覆构造. 北京: 地质出版社: 1?111.
[99]  Barley M E, Pickard A L, Hagemmann S G and Folkert S L. 1999. Hydrothermal origin for the 2 billion year old Mount Tom Price giant iron ore deposit, Hamersley Province, Western Australia. Mineralium Deposita, 34(8): 784?789.
[100]  Bellot J P. 2007. Extensional deformation assisted by mineralised fluids within the brittle-ductile transition: Insights from the southwestern Massif Central, France. Journal of Structural Geology, 29(2): 225?240.
[101]  Belykh V I, Dunai E I and Lugovaya I P. 2007. Physicochemical formation conditions of banded iron formations and high-grade iron ores in the region of the Kursk magnetic anomaly: Evidence from isotopic data. Geology of Ore Deposits, 49 (2): 147?159.
[102]  Bozkurt E and Park R G. 1997. Microstructures of deformed grains in the Augen gneisses of southem Menderes Massif (western Turkey) and their tectonic significance. Geologische Rundschau, 86(1): 103?119.
[103]  Brown M C, Oliver N H S and Dickens G R. 2004. Veins and hydrothermal fluid flow in the Mt. Whaleback Iron Ore District, eastern Hamersley Province, Western Australia. Precambrian Research, 128(3-4): 441?474.
[104]  Burov E B and Watts A B. 2006. The long-term strength of continental lithosphere: “jelly sandwich” or “crème br?lée”? GSA Today, 16 (1): 4?10.
[105]  Cameron E M. 1989. Derivation of gold by oxidative metamorphism of a deep ductile shear zone: Part 1. Conceptual model. Journal of Geochemical Explor?ation, 31(2): 135?147.
[106]  Campana B. 1966. Stratigraphic-structural-paleoclimatic co?nt?r?ols of the newly discovered iron ore deposits of West?ern Australia. Mineralium Deposita, 1: 53?59.
[107]  Chauvet A, Onézime J, Charvet J, Barbanson L and Faure M. 2004. Syn- to late-tectonic stockwork emplacement within the Spanish section of the Iberian pyrite belt: Structural, textural, and mineralogical constraints in the Tharsis and Lazarza areas. Economic Geology, 99(8): 1781?1792.
[108]  Coppola V, Boni M, Gilg H A, Balassone G and Dejonghe L. 2008. The “calamine” nonsulfide Zn-Pb deposits of Belgium: Petrographical, mineralogical and geochem?ical characterization. Ore Geology Reviews, 33(2): 187?210.
[109]  Corti G, Ranalli G, Mulugeta G, Agostini A, Sani F and Zugu A. 2010. Control of the rheological structure of the lithosphere on the inward migration of tectonic activity during continental rifting. Tectonophysics, 490: 165?172.
[110]  Craw D. 2000. Fluid flow at fault intersections in an active oblique collision zone, Southern Alps, New Zealand. Journal of Geochemical Exploration, 69: 523?526
[111]  Craw D, Koons P O, Horton T and Chamberlain C P. 2002. Tectonically driven fluid flow and gold mineralization in active collisional orogenic belts: Comparison betw?een New Zealand and western Himalaya. Tecton?op?hysics, 348(1?3): 135?153.
[112]  Dalstra H J and Guedes S. 2004. Giant hydrothermal hematite deposits with Mg-Fe metasomatism: A comparison of the Carajas, Hamersley, and other iron ores. Economic Geology, 99(8): 1793?1800.
[113]  Dalstra H J and Rosière C A. 2008. Structural controls on high-grade iron ores hosted by banded iron formation: A global perspective. Reviews in Economic Geology, 15: 73?106.
[114]  Fan Z G, Huang X Z, Tan L, Yang X, Zhang H R, Zhou D Q, Liu Q K and Cao B B. 2014. A study of iron deposits in the Anshan area, China based on interactive inversion technique of gravity and magnetic anomalies. Ore Geology Reviews, 57: 618?627.
[115]  Fox J S, Farquhar R, Rui I and Cook N. 1988. Genesis of basalt-hosted massive sulphide deposits from the Trondheim and Sulitjelma districts, Norway: Ore lead isotopic considerations. Mineralium Deposita, 23(4): 276?285.
[116]  France-Lanord C, Derry L and Galy A. 1998. Continental erosion and CO (sub 2) uptake inferences from the Himalayan system. Mineralogical Magazine, 62(1): 466?467.
[117]  Fyfe W S. 1992. Metamorphic fluids. Earth Science Review, 32(1-2): 1?146.
[118]  Fyfe W S and Kerrich R. 1985. Fluids and thrusting. Chemical Geology, 49(1-3): 353?362.
[119]  Ghisetti F, Kirschner D and Vezzani L. 2000. Tectonic controls on large-scale fluid circulation in the Apennines (Italy). Journal of Geochemical Exploration, 69: 533?537.
[120]  Ghosh G and Mukhopadhyay J. 2007. Reappraisal of the structure of the Western Iron Ore Group, Singhbhum craton, eastern India: Implications for the exploration of BIF-hosted iron ore deposits. Gondwana Research, 12(4): 525?532.
[121]  Goldfarb R J, Groves D I and Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geo?logy Reviews, 18(1-2): 1?75.
[122]  Gómez-Fernández F, Both R A, Mangas J and Arribas A. 2000. Metallogenesis of Zn-Pb carbonate?hosted mineralization in the southeastern region of the Picos de Europa (Central Northern Spain) Province: Geologic, fluid inclusion, and stable isotope studies. Economic Geology, 95(1): 19?39.
[123]  Gross G A. 1980. A classification of iron formations based on depositional environments. Canadian Mineralogist, 18: 215?222.
[124]  Groves D I. 1993. The crustal continuum model for late-Archaean lode-gold deposits of the Yilgarn Block, Western Australia. Mineralium Deposita, 28(6): 366?374.
[125]  Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G and Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13(1-5): 7?27.
[126]  Harker A. 1932. Study on metamorphism-rock transform?ation. Translated by Jiang Y C. 1981. Beijing: Geolog?ical Publishing House: 1?373.
[127]  He L Q, Song Y C, Chen K X, Hou Z Q, Yu F M, Yang Z S, Wei J Q, Li Z and Liu Y C. 2009. Thrust-controlled, sediment-hosted, Himalayan Zn-Pb-Cu-Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geology Reviews, 36(1-3): 106?132.
[128]  Hippertt J and Davis B. 2000. Dome emplacement and formation of kilometre-scale synclines in a granite? greenstone terrain (Quadrilátero Ferrífero, southeastern Brazil). Precambrian Research, 102(1-2): 99?121.
[129]  Hitzman M W, Oreskes N and Einaudi M T. 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58(1-4): 241?287.
[130]  Hou Z Q and Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 36(1-3): 2?24.
[131]  James H L. 1983. Distribution of banded iron-formation in space and time // Trendall A F and Morris R C. Banded Iron-Formation: Facts and Problems. Amste?rdam: Elsevier: 471?490.
[132]  Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90: 1473?1499.
[133]  Koons P O, Craw D, Cox S C, Upton P, Templeton A S and Chamberlain C P. 1998. Fluid flow during active oblique convergence: A Southern Alps model from mechanical and geochemical observations. Geology, 26(2): 159?162.
[134]  Lagoeiro L E. 1998. Transformation of magnetite to hematite and its influence on the dissolution of iron oxide minerals. Journal of Metamorphic Geology, 16(3): 415?423.
[135]  Lascelles D F. 2006. The genesis of the Hope Downs iron ore deposit, Hamersley Province, Western Australia. Economic Geology, 101(7): 1359?1376.
[136]  Lawley C, Imber J and Selby D. 2013. Structural controls on orogenic Au mineralization during transpression: Lupa goldfield, Southwestern Tanzania. Economic Geology, 108(7): 1615?1640.
[137]  Leach D L and Sangster D F. 1993. Mississippi Valley-type lead zinc deposits. Geological Association of Canada Special Paper, 40: 289?314.
[138]  Li H M, Zhang Z J, Li L X, Zhang Z C, Chen J and Yao T. 2014. Types and general characteristics of the BIF?related iron deposits in China. Ore Geology Reviews, 57: 264?287.
[139]  Lister G S and Davis G A. 1989. The origin of metamorphic core complexes and detachment fault formed during Tertiary continental extension in the north Colorado River region, U. S. A. Journal of Structural Geology, 11(1?2): 65?94.
[140]  McCuaig T C and Kerrich R. 1998. P-T-t deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geology Review, 12(6): 381?453.
[141]  Molnar P. 1988. Continental tectonics in the aftermath of plate tectonics. Nature, 335(6186): 131?137.
[142]  Morris R C. 2002. Iron ore genesis and post?ore metasomatism at Mount Tom Price // Proceedings of the Iron Ore 2002 conference, Perth, 2002, Australasian Institute of Mining and Metallurgy: 3?13.
[143]  Nabelek P I, Liu M and Sirbescu M-L. 2001. Thermo-rheo logical, shear heating model for leucogranite generation, metamorphism, and deformation during the Proterozoic Trans-Hudson orogeny, Bloack Hills, South Dakota. Tectonophysics, 342(3?4): 371?388.
[144]  Paradis S, Chi G X and Lavoie D. 2004. Fluid inclusion and isotope evidence for the origin of the Upton Ba-Zn-Pb deposit, Quebec Appalachians, Canada. Economic Geology, 99(4): 807?817.
[145]  Porter T M. 2002. Hydrothermal iron oxide copper-gold & related deposits: A global perspective. Geoconsulting Publishing, Linden Park: 1?377.
[146]  Robl J, Fritz H, Stüwe K and Bernhard F. 2004. Cyclic fluid infiltration in structurally controlled Ag?Pb?Cu occurrences (Schladming, Eastern Alps). Chemical Geology, 205(1-2): 17?36.
[147]  Rosière C A and Rios F J. 2004. The origin of hematite in high-grade iron ores based based on infrared micro?scopy and fluid inclusion studies: The example of the conceicao mine, Quadrilatero Ferrifero, Brazil. Econo?mic Geology, 99(3): 611?624.
[148]  Rosière C A, Siemes H, Quade H, Brokmeier H G and Jansen E M. 2001. Microstructures, textures and deformation mechanisms in hematite. Journal of Structural Geology, 23: 1429?1440.
[149]  Schofield D I and D, Lemos R S. 1998. Relationships between syntectonic granite fabrics and regional PTtd paths: An example from the Gande-Avalon boundary of NE Newfoundland. Journal of Structural Geology, 20(4): 459?471.
[150]  Shimada M. 1993. Lithosphere strength inferred from fracture strength of rocks at high confining pressures and temperatures. Tectonophysics, 217(1?2): 55?64.
[151]  Sibson R H and Scott J. 1998. Stress-fault controls on the containment and release of overpressured fluids: Examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand. Ore Geology Reviews, 13(1?5): 293?306.
[152]  Siemes H, Klingenberg B, Rybacki E, Naumann A, Sch?fer W, Jansen E and Kunze K. 2008. Glide systems of hematite single crystals in deformation experiments. Ore Geology Reviews, 33(3?4): 255?279.
[153]  Siemes H, Klingenberg B, Rybacki E, Naumann M, Schafer W, Jansen E and RosièreC A. 2003. Texture, microstru?cture, and strength of hematite ores experimentally deformed in the temperature range 600-1100°C and at strain rates between 10?4 and 10?6 s?1. Journal of Struct?ural Geology, 25(9): 1371?1391.
[154]  Sillitoe R H. 2003. Iron oxide-copper-gold deposits: An Andean view. Mineralium Deposita, 38(7): 787?812.
[155]  Spangenberg J E and Herlec U. 2006. Hydrocarbon biomarkers in the Topla-Me?ica zinc-lead deposits, Northern Karavanke/Drau Range, Slovenia: Paleoen?vironment at the site of ore formation. Economic Geology, 101(5): 997?1021.
[156]  Spencer J E and Welty J W. 1986. Possible controls of base-and precious-metal mineralization associated with Terriary detachment faults in the lower Colorado River Trough, Arizona and California. Geology, 14(3): 195?198.
[157]  Spier C A, de Oliveira Sonia M B and Rosière C A. 2003. Geology and geochemistry of the ?guas Claras Quadrilátero Ferrífero, Minas Gerais, Brazil. Miner?alium Deposita, 38(6): 751?774.
[158]  Spier C A, de Oliviera Sonia M B, Sial A N and Rios F J. 2007. Geochemistry and genesis of the banded iron formations of the Cauê Formation, Quadrilátero Ferrífero, Minas Gerais, Brazil. Precambrian Research, 152(3?4): 170?206.
[159]  Spry P G, Plimer I R and Teale G S. 2008. Did the giant Broken Hill (Australia) Zn-Pb-Ag deposit melt? Ore Geology Reviews, 34(3): 223?241.
[160]  Wang E D, Xia J M, Fu J F, Jia S S and Men Y K. 2014. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan- Benxi area, Northeastern China. Ore Geology Reviews, 57: 306?321.
[161]  Williams P J. 2010. Classifying IOCG deposits // Corriveau L and Mumin H. Exploring for iron-oxide copper-gold deposits: Canada and global analogues. Geological Association of Canada Short Course Notes, 20: 11?19.
[162]  Xu D R, Wang Z L, Cai J X, Wu C J, Bakun-Czubarow N, Wang L, Chen H Y, Baker M J and Kusiak M A. 2013. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318?342.
[163]  Xu D R, Wang Z L, Chen H Y, Hollings P, Jansen N H, Zhang Z C and Wu C J. 2014 Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China: Implications for the origin of a Neoproterozoic BIF system. Ore Geology Reviews, 57: 322?350.
[164]  Xu G and Lin X. 2000. Geology and geochemistry of the Changlongshan skarn iron deposit, Anhui Province, China. Ore Geology Reviews, 16(1?2): 91?106.
[165]  Zhai M G and Windley B F. 1990. The Archaean and early Proterozoic banded iron formations of North China: Their characteristics, geotectonic relations, chemistry and implications for crustal growth. Precambrian Research, 48: 267?286.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133