全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

皖南乌溪斑岩型金矿床赋矿侵入岩体的岩石地球化学及年代学研究

, PP. 153-166

Keywords: 锆石U-Pb年龄,元素地球化学特征,磷灰石,锆石氧逸度,乌溪

Full-Text   Cite this paper   Add to My Lib

Abstract:

皖南乌溪金矿床位于安徽省泾县榔桥镇,介于长江中下游多金属成矿带与华南成矿带之间,属于江南造山带。本文对乌溪含矿花岗斑岩钻孔样品以及地表出露的岩体开展锆石LA-ICP-MS定年,分别获得139.6±1.7Ma(ZK7301)、137.3±1.6Ma(ZK7001)、137.3±1.1Ma(10WX-1)三组年龄,表明钻孔中的斑岩和地表出露的岩体年龄一致,形成于燕山期早白垩世。同时该岩体主要受断裂构造控制,在成岩过程中受到少量新太古代地壳物质的混染。岩体中发育大量的隐爆角砾岩以及矿化角砾,表明乌溪矿床的矿体与花岗斑岩岩体可能同时形成。乌溪花岗斑岩元素分析结果表明该岩体属过铝质,具有富集大离子亲石元素,亏损高场强元素以及重稀土元素的特征,其中轻重稀土元素分异显著,且具有轻微Eu负异常。乌溪花岗斑岩中的磷灰石与长江系列花岗岩的磷灰石稀土特征相似,表明该区磷灰石的稀土元素特征受到幔源岩浆流体活动的影响;同时因为磷灰石δEu值较高,说明岩浆在演化过程中处于相对开放的构造环境并且具有较高的氧逸度条件。锆石氧逸度计算表明乌溪花岗斑岩在形成过程中具有较高的氧逸度,有利于Cu、Au等成矿元素富集沉淀成矿。同时乌溪花岗斑岩的形成与古太平洋板块对欧亚大陆的俯冲碰撞作用密切相关。乌溪金矿床的矿体中Pb、Zn元素出现明显的矿化,Au元素含量相对大陆地壳略高。乌溪金矿矿区内发育的大量断裂构造为成矿流体提供了充分的运移通道,有利于金矿的形成;进一步的野外勘测以及地球化学工作对乌溪矿区探矿和找矿工作具有重要的指示意义。

References

[1]  陈斌, 翟明国, 邵济安. 2002. 太行山北段中生代岩基的成因和意义: 主量和微量元素地球化学证据. 中国科学(D辑), 32: 896?907.
[2]  李双, 杨晓勇, 孙卫东, 戴圣潜. 2014. 皖南泾县榔桥岩体锆石U-Pb定年、Hf同位素和地球化学特征及其找矿指示意义. 地质学报, 88(8): 1561?1578.
[3]  刘颖, 刘海臣, 李献华. 1996. 用ICP-MS准确测定岩石样品中的40余种微量元素. 地球化学, 25: 552?558.
[4]  聂凤军, 江思宏, 刘妍. 2005. 内蒙古黑鹰山富铁矿床磷灰石稀土元素地球化学特征. 地球学报, 26: 435? 442.
[5]  孙卫东, 凌明星, 杨晓勇, 范蔚茗, 丁兴, 梁华英. 2010. 洋中脊俯冲与斑岩铜金矿成矿. 中国科学(D辑), 40: 127?137.
[6]  涂湘林, 张红, 邓文峰, 凌明星, 梁华英, 刘颖, 孙卫东. 2011. RESOlution激光剥蚀系统在微量元素原位微区分析中的应用. 地球化学, 40: 83?98.
[7]  王璞, 潘兆橹, 翁玲宝, 1987. 系统矿物学(下册). 北京: 地质出版社: 168?170.
[8]  张乐骏, 周涛发, 范裕, 袁峰, 钱兵, 马良. 2011. 宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究. 地质学报, 85: 834?848.
[9]  Candela P A. 1992. Controls on ore metal ratios in granite- related ore systems: An experimental and computational approach. Transactions of the Royal Society of Edinburgh Earth Sciences, 83: 317?326.
[10]  Cline J S and Bodnar R J. 1991. Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt. Journal of Geophysical Research- Solid Earth and Planets, 96: 8113?8126.
[11]  Danyushevsky L V, Robinson P, McGoldrick P, Large R and Gilbert S. 2003. LA-ICP-MS of sulphides: Evaluation of an XRF glass disc standard for analysis of different sulphide matrixes. Geochiminca et Cosmochimica Acta: 67?23.
[12]  Ludwig K R. 2003. User’s manual for Isoplot 3.00: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication: 1?70.
[13]  Lynton S J, Candela P A and Piccoli P M. 1993. An experimental study of the partitioning of copper between pyrrhotite and a high silica rhyolitic melt. Economic Geology, 88: 901?915.
[14]  Pearce J A. 1996. Sources and settings of granitic rock. Episodes, 19(4): 120?125.
[15]  Sun W D, Xie Z, Chen J F, Zhang X, Chai Z F, Du A D, Zhao J S, Zhang C G and Zhou T F. 2003. Os-Os dating of copper and molybdenum deposits along the middle and lower reaches of Yangtze River, China. Economic Geology, 98: 175?180.
[16]  Thornton C and Tuttle O. 1960. Chemistry of igneous rocks, part 1: Differentiation index. American Journal of Science, 280: 664?684.
[17]  Ulrich T, Gunther D and Heinrich C A. 1999. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature, 399: 676?679.
[18]  Zhou X M and Li X H. 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magma. Tectonophysics, 326(3?4): 269?287.
[19]  张绍立, 王联魁, 朱为方. 1985. 用磷灰石中稀土元素判别花岗岩成岩成矿系列. 地球化学, 1: 47?57.
[20]  周涛发, 袁锋, 侯明金, 杜建国, 范裕, 朱光, 岳书仓. 2004. 江南隆起带东段皖赣相邻区燕山期花岗岩类的成因及形成的地球动力学背景. 矿物岩石, 24(3): 65?71.
[21]  Audetat A, Pettke T and Dolejs D. 2004. Magmatic anhydrite and calcite in the ore-forming quartz- monzodiorite magma at Santa Rita, New Mexico (USA): Genetic constraints on porphyry-Cu mineralization. Lithos, 72: 147?161.
[22]  Ballard J R, Palin J M and Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petrology, 144: 347?364.
[23]  Belousova E A, Walters S, Griffin W L and O''Reilly S Y. 2001. Trace element signatures of apatites from granitoids of Mount Isa Inlier, north-west Queensland, Australia. Australian Journal of Earth Sciences, 48: 603?619.
[24]  Blevin P L and Chappell B W. 1992. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Transactions of the Royal Society of Edinburgh Earth Sciences, 83: 305?316.
[25]  Deniel C, Vidal P, Fernandez A, Le Fort P and Peucat J J. 1987. Isotopic study of the Manaslu granite (Himalaya, Nepal): Inferences on the age and source of Himalayan leucogranites. Contributions to Mineralogy and Petrology, 96: 78?92.
[26]  Flem B and Bedard L P. 2002. Determination of trace elements in BCS CRM 313/1 (BAS) and NIST SRM 1830 by inductively coupled plasma-mass spectrometry and instrumental neutron activation analysis. Geostandards Newsletters, 26: 287?300.
[27]  F?rster H J, Tischendorf G and Trumbull R B. 1997. An evaluation of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos, 40: 261?293.
[28]  Gustafson L B and Hunt J P. 1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70: 857?912.
[29]  Hedenquist J W and Lowenstern J B. 1994. The role of magmas in the formation of hydrothermal ore deposits. Nature, 370: 519?527.
[30]  Hinton R W and Upton B G J. 1991. The chemistry of zircon: Variations within and between large crystals from syenite and alkalibasalt xenoliths. Geochimica et Cosmochimica Acta, 55: 3287?3302.
[31]  Jugo P J, Candela P A, and Piccoli P M. 1999. Magmatic sulfides and Au: Cu ratios in porphyry deposits: An experimental study of copper and gold partitioning at 850℃, 100 MPa in a haplogranitic melt pyrrhotite intermediate solid solution gold metal assemblage, at gas saturation. Lithos, 46: 573?589.
[32]  Jugo P J, Luth R W and Richards J P. 2005. Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochimica et Cosmochimica Acta, 69: 497?503.
[33]  Li Z X and Li X H. 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179?182.
[34]  Liang H Y, Campbell I H, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W, and Zhang Y Q. 2006. Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineralium Deposita, 41: 152?159.
[35]  Liang H Y, Sun W, Su W C and Zartman R E. 2009a. Porphyry Copper-Gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Economic Geology, 104: 587?596.
[36]  Liang J L, Ding X, Sun X M, Zhang Z M, Zhang H and Sun W D. 2009b. Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chemical Geology, 268: 27?40.
[37]  Maruyama S, Isozaki Y, Kimura G and Terabayashi M. 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6(1): 121?142.
[38]  Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915?918.
[39]  Pasteris J D. 1996. Mount Pinatubo volcano and “negative” porphyry copper deposits. Geology, 24: 1075?1078.
[40]  Pearce J A, Harris N B W, Tindle AG. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956-983.
[41]  Pearce N J G, Perkins W T, Westgate J A, Gorton M P, Jackson S E, Neal C R and Chenery S P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletters, 21: 115?144.
[42]  Philpotts J A. 1970. Redox estimation from a calculation of Eu2+ and Eu3+ concentration in natural phases. Earth and Planetary Scicence Letters, 9: 257?268.
[43]  Rudnick R L and Gao S. 2003. Composition of the continental crust // Holland H D and Turekian K K. Treatise on Geochemistry. Elsevier-Pergamon, Oxford: 1?64.
[44]  Stern C R and Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 123: 263?281.
[45]  Sun W D, Ding X, Hu Y H and Li X H. 2007. The golden transformation of the Cretaceous plate subduction in the west Pacific. Earth and Planetary Scicence Letters, 262: 533?542.
[46]  Sun W D, Li S, Yang X Y, Ling M X, Ding X, Duan L A, Zhan M Z, Zhang H and Fan W M. 2012. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. International Geology Review, doi: org/10. 1080/00206814.2012.698920 (2012).
[47]  Vidal P, Cocherie A and Le Fort P. 1982. Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochimica et Cosmochimica Acta, 46: 2279?2292.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133