全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

豫西卢氏八宝山铁铜多金属矿床黄铁矿成分研究

, PP. 128-138

Keywords: 八宝山铁铜多金属矿床,斑岩成矿体系,黄铁矿,氧化还原环境,卢氏

Full-Text   Cite this paper   Add to My Lib

Abstract:

豫西卢氏八宝山铁铜多金属矿床是华北克拉通南缘中生代斑岩成矿体系中以铁矿化为主的矿床,其中南矿带和西矿带广泛发育黄铁矿。电子探针成分显示,黄铁矿的主要元素S和Fe的总和超过90%,但同一种黄铁矿表面不同位置微量元素Cu和As的含量存在突变。这种突变说明,来源于同一岩浆热液系统的富液相流体与上升的富气相流体的混合作用是引起黄铁矿沉淀的主要机制。黄铁矿中的As有两种赋存价态As3+和As1?,代表了八宝山斑岩矿床中形成黄铁矿的岩浆流体可能经历了先氧化后还原的环境(As3+指示氧化环境,As1?指示还原环境),说明八宝山矿区具有斑岩铜矿的成矿潜力。

References

[1]  河南省卢氏县地质勘查研究所. 2011. 1∶2000河南省卢氏县八宝山铁铜矿区地形地质及工程布置图.
[2]  王长明, 邓军, 张寿庭, 燕长海. 2005. 河南卢氏?栾川地区铅锌矿成矿多样性分析及成矿预测. 地质通报, 24(10?11): 1075?1080.
[3]  肖中军, 孙卫志. 2007. 河南卢氏夜长坪钼钨矿床成矿条件及找矿远景分析. 地质调查与研究, 30(2): 141 ?148.
[4]  杨德彬, 许文良, 王冬艳, 王清海, 裴福萍. 2004. 河南三门峡市曲里石英闪长斑岩锆石SHRIMP U-Pb定年及其地质意义. 中国地质, 31(4): 379?383.
[5]  印修章, 胡爱珍. 2004. 以闪锌矿标型特征浅论豫西若干铅锌矿成因. 物探与化探, 28(5): 413?417.
[6]  袁见齐, 朱上庆, 翟裕生. 1985. 矿床学. 北京: 地质出版社.
[7]  曾令君, 星玉才, 周栋, 赵太平, 姚军明, 包志伟. 2013. 河南卢氏八宝山花岗斑岩LA-ICP-MS锆石U-Pb年龄和Hf同位素组成特征. 大地构造与成矿学, 37(1): 65?75.
[8]  Cline J S. 2001. Timing of gold and arsenic sulfide mineral deposition at the Getchell Carlin-type gold deposit, north-central Nevada. Economic Geology, 96: 75?89.
[9]  Deditius A P, Utsunomiya S, Ewing R C and Kesler S E. 2009a. Nanoscale “liquid” inclusions of As-Fe-S in arsenian pyrite. American Mineralogist, 94: 391?394.
[10]  Deditius A P, Utsunomiya S, Ewing R C, Chryssoulis S L, Venter D, and Kesler S E. 2009b. Decoupled geochemical behavior of As and Cu in hydrothermal systems. Geology, 37(8): 707?710.
[11]  Deditius A P, Utsunomiya S, Reich M, Kesler S E, Ewing R C, Hough R and Walshe J. 2011. Trace metal nanoparticles in pyrite. Ore Geology Reviews, 42: 32?46.
[12]  Deditius A P, Utsunomiya S, Renock D, Ewing R C, Ramana C V, Becker U and Kesler S E. 2008. A proposed new form of arsenian pyrite: Composition, nanostructure and geochemical significance. Geochimica et Cosmochimica Acta, 72: 2919?2933.
[13]  Emsbo P, Hofstra A H, Lauha E A, Griffin G L, Hutchinson R W, John D A and Theodore T G. 2003. Origin of high-grade gold ore, source of ore fluid components, and genesis of the Meikle and neighboring Carlin-type deposits, northern Carlin Trend, Nevada. Economic Geology, 98: 1069?1105.
[14]  Fleet M E, Mumin A H. 1997. Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82: 182?193.
[15]  Heinrich C A. 2005. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Mineralium Deposita, 39: 864?889.
[16]  Kesler S E, Russel N, Seaward M, Rivera J, McCurdy K, Cumming G L and Sutter J F. 1981. Geology and geochemistry of sulfide mineralization underlying the Pueblo Viejo gold-silver oxide deposit, Dominican Republic. Economic Geology, 76: 1096?1117.
[17]  Kr?ner A, Compston W, Zhang G W, Guo A L and Todt W. 1988. Age and tectonic setting of late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating. Geology, 16: 211?215.
[18]  Liang H Y, Sun W D, Su W C and Zartman R E. 2009. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite aiteration. Economic Geology, 104: 587?596.
[19]  Simon G, Huang H, Penner-Hahn J E, Kesler S E and Kao L S. 1999. Oxidation state of gold and arsenic in gold- bearing arsenian pyrite. American mineralogist, 84: 1071?1079.
[20]  Williams-Jones A E and Heinrich C A. 2005. Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100: 1287?1312.
[21]  河南省地质局地质四队. 1977. 河南省卢氏县八宝山矿区铁铜矿勘探地质报告.
[22]  李铁刚, 武广, 陈毓川, 李宗彦, 杨鑫生, 乔翠杰. 2013. 豫西银家沟杂岩体年代学、地球化学和岩石成因. 岩石学报, 29(1): 46?66.
[23]  刘家齐, 曾贻善. 2001. 豫西八宝山斑岩型铜铁矿床包裹体研究. 华南地质与矿产, (2): 43?51.
[24]  马桂霞, 李维明. 2006. 豫西卢氏北部地区角砾岩的特征及其找矿意义. 世界地质, 25(4): 363?365.
[25]  毛冰, 叶会寿, 李超, 肖中军, 杨国强. 2011. 豫西夜长坪钼矿床辉钼矿铼?锇同位素年龄及地质意义. 矿床地质, 30(6): 1069?1074.
[26]  颜正信, 孙卫志, 张年成, 周梅, 黄智华. 2007. 河南灵宝银家沟硫铁多金属矿床成矿地质条件及找矿方向. 地质调查与研究, 30(2): 149?157.
[27]  张步升, 袁伟. 1994. EDAX能谱仪半定量分析(SQU)中ZAF修正技术的讨论. 电子显微学报, 2: 116?120.
[28]  Ballard J R, Palin J M and Campbell I H. 2002. Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon: Application to porphyry copper deposits of northern Chile. Contributions to Mineralogy and Petro?l?ogy, 144: 347?364.
[29]  Brimhall G H and Ghiorso M S. 1983. Origin and ore-form?ing consequences of the advanced argillic alteration process in hypogene environments by magmatic gas contamination of meteoric fluids. Economic Geology, 78: 73?90.
[30]  Morey A A, Tomkins A G, Bierlin F P, Wienberg R F and Davidson G J. 2008. Bimodal distribution of gold in pyrite and arsenopyrite: Examples from the Archean Boorara and Bardoc shear systems, Yilgarn craton, Western Australia. Economic Geology, 103: 599?614.
[31]  Mungall J E. 2002. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology, 30: 915?918.
[32]  Palenik C S, Utsunomiya S, Reich M, Kesler S E and Ewing R C. 2004. “Invisible” gold revealed: Direct imaging of gold nanoparticles in a Carlin-type deposit. American Mineralogist, 89: 1359?1366.
[33]  Redmond P B, Einaudi M T, Inan E E, Landtwing M R and Heinrich C A. 2004. Copper deposition by fluid cooling in intrusion-centered systems: New insights from the Bingham porphyry ore deposit, Utah. Geology, 32(3): 217?218.
[34]  Reich M, Deditius A, Chryssoulis S, Li J W, Ma C Q, Parada M A, Barraand F and Mittermayr F. 2012. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104: 42?62.
[35]  Reich M, Kesler S E, Utsunomiya S, Palenik C S, Chryssoulis S L and Ewing R C. 2005. Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69: 2781?2796.
[36]  Savage K S, Tingle T N, O’Day P A, Waychunas G A and Bird D K. 2000. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California. Applied Geochemistry, 15: 1219?1244.
[37]  Schmid-Beurmann P and Bente K. 1995. Stability properties of Cu2S-FeS2 solid solution series pyrite type. Mineralogy and Petrology, 53: 333?341.
[38]  Shimazaki H and Clark L A. 1970. Synthetic FeS2-CuFe2 solid solution and fukuchilite-like minerals. Canadian Mineralogist, 10: 648?664.
[39]  Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105: 3?41.
[40]  Sun W D, Arculus R J, Kamenetsky V S and Binns R A. 2004. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature, 431: 975?978.
[41]  Sun W D, Liang H Y, Ling M X, Zhan M Z, Ding X, Zhang H, Yang X Y, Li Y L, Ireland T R, Wei Q R and Fan W M. 2013. The link between reduced porphyry copper deposits and oxidized magmas. Geochimica et Cosmochimica Acta, 103: 263?275.
[42]  Turner S J. 1997. The Yanacocha epithermal gold deposits, northern Peru: High-sulfidation min-eralization in the flow dome setting. Golden: Colorado School of Mines Ph. D. thesis: 341.
[43]  Zhao T P, Zhai M G, Xia B, Li H M, Zhang Y X and Wan Y S. 2004. Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong’er Group: Constraints on the initial formation age of the cover of the North China Craton. Chinese Science Bulletin, 49(23): 2495?2502.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133