全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

老挝龙湖钾盐矿床沉积碳酸盐碳、氧同位素组成及其对成钾环境的初步指示

, PP. 334-343

Keywords: 钾盐矿床,盐岩上覆泥岩,碳、氧同位素,沉积环境,成矿规律

Full-Text   Cite this paper   Add to My Lib

Abstract:

碳、氧同位素作为反映古沉积环境、成矿物源和水?岩反应等良好的稳定同位素指标,被广泛应用。通过对老挝龙湖钾盐矿区ZK309、ZK301、ZK311和ZK004四个钻孔农波组盐岩上覆泥岩碳、氧同位素组成的分析,讨论了盐岩上覆泥岩沉积的碳、氧同位素组成变化特征及其指示的沉积环境。经分析,所测碳、氧同位素基本代表了碳酸盐碳、氧同位素组成,初步推测这些碳酸盐均为当地自生,受后期改变很少,δ13C和δ18O平均值分别为?5.1‰和?4.6‰,其中δ13C值略高于一般陆相碳酸盐碳同位素最大值?5.69‰,δ18O值介于?2.71‰~?10.8‰之间,ZK309和ZK301钻孔碳、氧同位素相关系数均小于0.7,初步指示盐岩沉积之后沉积环境为陆相。δ13C值略高于?5.69‰,推测是后期盐岩层被淋滤,泥岩层受淋滤后的残余卤水影响的结果,这也解释了蒸发岩沉积层序异常(钾石盐覆盖于光卤石之上)的沉积特征。因此,在本研究中,大气水在泥岩碳、氧同位素的变化中扮演了重要角色。

References

[1]  黄智龙, 李文博, 陈进, 许德如, 韩润生, 刘丛强. 2004. 云南会泽超大型铅锌矿床C、O同位素地球化学. 大地构造与成矿学, 28(1): 53?59.
[2]  李龙, 郑永飞, 周根陶, 龚冰, 傅斌, 赵子福. 2002. 硅酸盐岩中微量碳酸盐的碳、氧同位素分析及其地球化学应用. 岩石学报, 18(1): 109?116.
[3]  刘传联, 赵泉鸿, 汪品先. 2001. 湖相碳酸盐氧碳同位素的相关性与生油古湖泊类型. 地球化学, 30(4): 363?367.
[4]  曲懿华. 1997. 兰坪?思茅盆地与泰国呵叻盆地含钾卤水同源性研究. 化工矿产地质, 199(2): 82?98.
[5]  唐永永, 毕献武, 和利平, 武丽艳, 冯彩霞, 邹志超, 陶琰, 胡瑞忠. 2011. 兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳?氧同位素地球化学特征研究. 岩石学报, 27(9): 2635?2645.
[6]  吴静淑, 王成玉. 1986. 泥灰岩中方解石碳、氧同位素分析方法. 中国地质科学院矿床地质研究所所刊, 2: 240?246.
[7]  伊海生, 林金辉, 周恳恳, 李军鹏. 2007. 青藏高原北部新生代湖相碳酸盐岩碳、氧同位素特征及古环境意义. 古地理学报, 9(3): 303?312.
[8]  尹汉辉, 范蔚茗, 林舸. 1990. 云南兰坪?思茅地洼盆地演化的深部因素及幔?壳复合成矿作用. 大地构造与成矿学, 4(2): 113?124.
[9]  游海涛, 程日辉, 刘昌岭. 2002. 古盐度复原法综述. 世界地质, 21(2): 111?117.
[10]  张西营, 马海州, 韩元红. 2012. 泰国?老挝呵叻高原钾盐矿床研究现状及展望. 地球科学进展, 27(5): 549?556.
[11]  张秀莲. 1985. 碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系. 沉积学报, 3(4): 17?291.
[12]  钟维敷, 李志伟, 单卫国. 2003. 呵叻盆地钾镁盐矿沉积特征及成因探讨. 云南地质, 23(2): 142?150.
[13]  周家喜, 黄智龙, 周国富, 曾乔松. 2012. 黔西北天桥铅锌矿床热液方解石C、O同位素和REE地球化学. 大地构造与成矿学, 36(1): 93?101.
[14]  Bird M I, Chivas A R, Radnell C J and Burton H R. 1991. Sedimentological and stable isotope evolution of lakes in the Vestfold Hills, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 8(1?4): 109?130.
[15]  Camoin G, Casanova J, Rouchy J M, Blanc-valleronc M M and Deconinckd F. 1997. Environmental controls on perennial and ephemeral carbonate lakes: The Central Palaeo- Andean Basin of Bolivia during Late Cretaceous to early Tertiary times. Sediment Geology, 113(1?2): 1?26.
[16]  Cendón D I, Ayora C, Pueyo J J, Taberner C and Blanc-Valleronc M M. 2008. The chemical and hydro- logical evolution of the Mulhouse potash basin (France): Are “marine” ancient evaporates always representative of synchronous seawater chemistry? Chemical Geology, 252(3?4): 109?124.
[17]  Craig H. 1965. The measurement of oxygen isotope palaeotemperatures // Stable Isotopes in Oceanographic Studies and Palaeotemperatures. Laboratory of Geology of Nucl, Pisa, Italy: 9?130.
[18]  Deines P. 1980. The isotopic composition of reduced organic carbon // Fritz P and Fontes J. Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier: 329?406.
[19]  Fairchild J, Marshall J D and Bertrand-Sarfati J. 1990. Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania): Influences of primary mineralogy and diagenesis. American Journal of Science, 290?A: 46?79.
[20]  Friedman I and O’nell J R. 1977. Compilation of stable isotope fractionation factors of geochemical interest // Fleischer M. Data of Geochemistry. Washington D C: U. S. Department of the Interior: 1?12.
[21]  Hendeson A C G, Holmes J A, Zhang J W, Leng M J and Carvalho L R. 2003. A carbon- and oxygen-isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau. Chinese Science Bulletin, 48(14): 1463?1468.
[22]  Kaufman A J and Knoll A H. 1995. Neoproterozoic variations in the C-isotopic composition of seawater: Stratigraphic and biogeochemical implications. Precambrian Research, 73(1?4): 27?49.
[23]  Kaufman A J, Knoll A H and Awramik S M. 1992. Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group, northwestern Canada, as a test case. Geology, 20: 181?185.
[24]  Keith M L and Weber J N. 1964. Carbon and oxygen isotopic composition of selected limestone and fossils. Geochimica et Cosmochimica Acta, 28: 1787?1816.
[25]  Kelts K and Talbot M. 1990. Lacustrine carbonates as geochemical archives of environmental change and biotic/abiotic interactions // Large Lakes. Springer Berlin Heidelberg: 288?315.
[26]  Khim B K, Woo S and Yoon S H. 2000. Comparison of oxygen isotope profile of a fossil bivalve with the modern hydrographic condition: Case study of the Seoguipo Formation (Korea). Geosciences Journal, 4(1): 15?24.
[27]  Knoll A H, Hayes J M, Kaufman A J, Swett K and Lambrrt I B. 1986. Secular variation in carbon isotope ratios from upper Proterozoic successions of Svalbard and East Greenland. Nature, 321: 832?838.
[28]  Li X Z, Liu W G and Xu L M. 2012. Carbon isotopes in surface-sediment carbonates of modern Lake Qinghai (Qinghai?Tibet Plateau): Implications for lake evolution in arid areas. Chemical Geology, 300?301: 88?96.
[29]  Lister G S, Kelts K, Chen K Z, Yua J Q and Niessena F. 1991. Lake Qinghai, China: Closed-lake basin levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palae- oecology, 84(1?4): 141?162.
[30]  Lowenstein T K, Spencer R J and Pengxi Z. 1989. Origin of Ancient Potash Evaporates: Clues from the Modem Nonmarine Qaidam Basin of Western China. Science, 4222(245): 1090?1092.
[31]  Paz J D S and Rossetti D F. 2006. Paleohydrology of an Upper Aptian lacustrine system from northeastern Brazil: Integration of facies and isotopic geochemistry. Palaeo- geography, Palaeoclimatology, Palaeoecology, 241(9): 247?266.
[32]  Qing H and Veizer J. 1994. Oxygen and carbon isotopes of the Ordovician articulate brachiopods: Implication for the isotopic composition of Ordovician seawater. Geochimica et Cosmochimica Acta, 58(20): 4429?4442.
[33]  Sinha R and Raymahashay B C. 2004. Evaporite mineralogy and geochemical evolution of the Sambhar Salt Lake, Rajasthan, India. Sedimentary Geology, 166: 59?71.
[34]  Suwanich P. 1993. Clay-mineral assemblages from some levels of K-118 drill core of Maha Sarakham evaporites, northeastern Thailand. Journal of Southeast Asian Earth Sciences, 8(1?4): 369?381.
[35]  Talbot M R. 1990. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80(4): 261?279.
[36]  Talbot M R and Kelts K. 1990. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. AAPG, 50: 61?76.
[37]  陈强, 张慧元, 李文厚, 郝松立, 刘卓. 2012. 鄂尔多斯奥陶系碳酸盐岩碳、氧同位素特征及其意义. 古地理学报, 14(1): 117?124.
[38]  曲懿华. 2010. 泰国呵叻盐盆地(含老挝)钾石盐成矿机理初探. 中国钾盐, 6: 16?18.
[39]  帅开业. 1987. 云南中、新生代地质构造演化与蒸发岩建造. 现代地质, (2): 207?229.
[40]  Hite R J. 1974. Evaporate deposits of the Korat plateau, Northeastern Thailand // Fourth Symposium on Salt. Northern Ohio Geological Society, 1: 135?146.
[41]  Hite R J and Japakssetr T. 1979. Potash deposits of the Khorat plateau, Thailand and Laos. Economic Geology, 74(2): 448?458.
[42]  Hoefs J. 1980. Stable Isotope Geochemistry. Berlim: Springer Verlag: 208.
[43]  Kaufman A J, Hayes J M, Knell A H and Germs G J B. 1991. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: Stratigraphic variation and the effects of diagenesis and metamorphism. Precambrian Research, 49: 301?327.
[44]  Tan H B, Ma H Z, Li B K, Zhang X Y and Xiao Y K. 2010. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chinese Science Bullentin, 55(27?28): 3181?3188.
[45]  Uyha-Aroon C. 1993. Continental Origin of the Maha Sarakham Evaporates, Northeastern Thailand. Southeast Asian Earth Sciences, 8(1?4): 193?203.
[46]  Valero-Gracēs B L, Kelts K and Ito E. 1995. Oxygen and carbon isotopes trends and sedimentological evolution of a meromictic and saline lacustrine system: The Holocene Medicine Lake basin, North American Great Plains, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(3?4): 253?278.
[47]  Veizer J. 1983. Chemical diagenesis of carbonate rocks: Theory and application of trace element technique, in Stable isotopes in sedimentary geology. Society of Economic Paleontologists and Mineralogists, Tulsa, Oklahoma: 10.
[48]  Warren K. 1999. Evaporates: Their Evolution and Economics. Hoboken: Wiley-Blackwell: 235?239.
[49]  Xu H, AI L, Tan L C and An Z S. 2006. Stable isotopes in bulk carbonates and organic matter in recent sediments of Lake Qinghai and their climatic implications. Chemical Geology, 235: 262?275.
[50]  Zhang X Y, Ma H Z, Ma Y Q, Tang Q L and Yuan X L. 2013. Origin of the late Cretaceous potash-bearing evaporites in the Vientiane Basin of Laos: δ11B evidence from borates. Journal of Asian Earth Sciences, 62: 812?818.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133