全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

论多因复成矿床的形成机理

DOI: 10.16539/j.ddgzyckx.2015.03.005, PP. 413-435

Keywords: 地幔(柱)对流和上涌,地台活化,构造?岩浆活化,多因复成矿床,大地构造发展

Full-Text   Cite this paper   Add to My Lib

Abstract:

结合现代大陆动力学与地球动力学最新理论与研究和应用进展,以及国内几个典型矿床的成矿实例分析,本文重新审视了地台活化区(即地洼区)多因复成矿床的形成机理。作者认为,陈国达先生所研究的地台活化区应特指中国东部或全球类似地区大地构造发展至中生代时期因发生强烈构造?岩浆活动和相关成矿作用而在大陆地壳的表现。由于成矿作用与大地构造发展和/或地球动力学事件具有密切的成因联系,以及由于地壳演化及其大地构造发展阶段还具有独特性或存在某些差异,成矿作用从而表现出多旋回性、特殊性或叠加改造和富化特点;特别是,地台活化区往往包含多大地构造发展阶段,并发生大规模构造变形、岩浆活动和变质作用等构造?岩浆?热(流体)事件,因而这种活化构造区内的成矿作用往往具有多因复成成矿特征,并形成了具有经济意义的、大而富的矿床。实质上,多因复成矿床是多地质过程包括沉积作用、构造变形、岩浆作用和变质作用及伴生的大规模流体事件等耦合的产物,其动力学机制可能来源于(多期或幕式)地幔(柱)对流和上涌及壳?幔相互作用或地幔柱?岩石圈板块相互作用。作者最后指出,多因复成矿床今后的研究重点仍应关注其成矿动力学机制与过程。

References

[1]  陈国达. 1965. 地洼区――后地台阶段的一种新型活动区 // 中国大地构造问题. 北京: 科学出版社: 1?52.
[2]  陈国达. 1982. 多因复成矿床并从地壳演化看其形成机理. 大地构造与成矿学, 6(1): 33?55.
[3]  陈衍景. 1996. 碰撞造山体制的流体演化模式: 理论推导和东秦岭金矿床氧同位素证据. 地学前缘, 3(4): 282?289.
[4]  陈衍景. 2013. 大陆碰撞成矿理论的创建及应用. 岩石学报, 29(1): 1?17.
[5]  陈衍景, 翟明国, 蒋少涌. 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695?2726.
[6]  程裕淇. 1957. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题. 地质学报, 37(2): 153?180.
[7]  邓晋福. 1990. 岩浆?成矿作用?板块构造――八十年代火成岩研究新进展. 地质科技情报, 9(2): 39?44.
[8]  地质大词典. 2005. (一) 普通地质、构造地质分册(下册)(构造地质、地质力学). 北京: 地质出版社: 80?207.
[9]  董军, 赖健清, 彭省临. 2001. 地幔蠕动流中一类复杂动力学现象. 大地构造与成矿学, 25(3): 259?264.
[10]  范宏瑞, 陈福坤, 王凯怡, 谢奕汉, Wilde S, Satir M. 2002. 白云鄂博REE-Fe-Nb矿床碳酸岩墙锆石U-Pb年龄及其地质意义. 岩石学报, 18(3): 363?368.
[11]  范宏瑞, 胡芳芳, 陈福坤, 杨奎锋, 王凯怡. 2006. 白云鄂博超大型REE-Fe-Nb矿区碳酸岩墙的侵位年龄――兼答Le Bas博士的质疑. 岩石学报, 22(2): 519?520.
[12]  范宏瑞, 杨奎锋, 胡芳芳, 王凯怡, 翟明国. 2010. 内蒙古白云鄂博地区基底岩石锆石年代学及对构造背景的指示. 岩石学报, 26(5): 1342?1350.
[13]  范蔚茗, Menzies M A, 尹汉辉, 郝新才, 陈欣, 邹和平. 1993. 中国东南沿海深部岩石圈的性质和深部作用过程初探. 大地构造与成矿学, 17(1): 23?30.
[14]  葛良胜, 邓军, 王长明. 2012. 构造动力体制与成矿环境及成矿作用――以三江复合造山带为例. 岩石学报, 29(4) : 1115?1128.
[15]  侯增谦, 宋玉财, 李政, 王召林, 杨志明, 杨竹森, 刘英超, 田世洪, 何龙清, 陈开旭, 王富春, 赵呈祥, 薛万文, 鲁海峰. 2008. 青藏高原碰撞造山带 Pb-Zn- Ag-Cu 矿床新类型: 成矿基本特征与构造控矿模型. 矿床地质, 27(2): 123?144.
[16]  林舸. 2005. 活化构造的动力学机制研究进展. 大地构造与成矿学, 29(1): 56?62.
[17]  林舸, 范蔚茗. 2015. 活化构造与克拉通破坏的动力学机制研究. 大地构造与成矿学, 39(3): 391?401.
[18]  龙淑贞, 汪灵. 2002. 陈国达与地洼学说. 大地构造与成矿学, 26(1): 107?112.
[19]  毛景文, 李红艳, 王登红, 彭聪. 1998. 华南地区中生代多金属矿床形成与地幔柱关系. 矿物岩石地球化学通报, 17(2): 130?132.
[20]  毛景文, 张作衡, 余金杰, 王义天, 牛宝贵. 2003. 华北及邻区中生代大规模成矿的地球动力学背景: 从金属矿床年龄精测得到启示. 中国科学(D辑), 33(4): 289?300.
[21]  毛景文, 周振华, 丰成友, 王义天, 张长青, 彭惠娟, 于淼. 2012. 初论中国三叠纪大规模成矿作用及其动力学背景. 中国地质, 39(6): 1437?1471.
[22]  欧阳成甫, 徐楚明, 胡承绮, 郎跃秀. 1993. 云南澜沧老厂银铅矿区隐伏花岗岩体预测及其意义. 大地构造与成矿学, 17(2): 119?126.
[23]  王登红. 1998. 地幔柱及其成矿作用. 北京: 地震出版社: 1?160.
[24]  王登红, 林文蔚, 杨建民, 阎升好. 1999. 试论地幔柱对于我国两大金矿集中区的控制意义. 地球学报, 20(2): 157?162.
[25]  王辑, 李双庆, 王保良, 李家驹. 1992. 狼山?白云鄂博裂谷系. 北京: 北京大学出版社: 1?132.
[26]  王凯怡, 杨奎锋, 范宏瑞, 胡芳芳, 胡辅佑. 2012. 白云鄂博矿床研究若干问题的探讨. 地质学报, 86(5): 687?699.
[27]  谢桂青, 胡瑞忠, 赵红军, 蒋国豪. 2001. 中国东南部地幔柱及其与中生代大规模成矿关系初探. 大地构造与成矿学, 25(2): 179?186.
[28]  徐义刚, 何斌, 罗震宇, 刘海泉. 2013. 我国大火成岩省和地幔柱研究进展与展望. 矿物岩石地球化学通报, 32(1): 25?39.
[29]  许德如, 吴传军, 吕古贤, 周岳强, 于亮亮, 张健岭, 胡国成, 侯茂洲. 2015. 岩石流变学原理在构造成矿中应用――以BIF型富铁矿床为例. 大地构造与成矿学, 39(1): 93?109.
[30]  杨奎锋, 范宏瑞, 胡芳芳, 王凯怡. 2012. 白云鄂博陆缘裂谷系沉积物源与超大型稀土矿床含矿白云岩的成因探讨. 地质学报, 86(5): 775?784.
[31]  杨心宜. 2003. 与地洼学说相关的几个问题. 大地构造与成矿学, 27(3): 206?211.
[32]  翟明国. 2008. 华北克拉通中生代破坏前的岩石圈地幔与下地壳. 岩石学报, 24(10): 2185?2204
[33]  翟明国. 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24?36.
[34]  翟明国. 2011. 克拉通化与华北陆块的形成. 中国科学(D辑), 41(8): 1037?1046
[35]  翟明国. 2013. 中国主要古陆与联合大陆的形成――综述与展望. 中国科学(D辑), 43(10): 1583? 1606.
[36]  翟明国, 朱日祥, 刘建明, 孟庆任, 侯泉林, 胡圣标, 李忠, 张宏福, 刘伟. 2003. 华北东部中生代构造体制转折的关键时限. 中国科学(D辑), 33(10): 913?920.
[37]  张晓晖, 翟明国. 2010. 华北北部古生代大陆地壳增生过程中的岩浆作用与成矿效应. 岩石学报, 26(5): 1329?1341.
[38]  章雨旭, 江少卿, 张绮玲, 赖晓东, 彭阳, 杨晓勇. 2008. 论内蒙古白云鄂博群和白云鄂博超大型稀土?铌?铁矿床成矿的年代. 中国地质, 35(6): 1129?1137.
[39]  Arndt N. 2000. Geochemistry: Hot heads and cold tails. Nature, 407: 458?459.
[40]  Bertrand G, Guillou-Frottier L and Loiselet C. 2014. Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: Insights from a paleotectonic approach. Ore Geology Reviews, 60: 174?190.
[41]  Berzina A P, Berzina A N and Gimon V O. 2011. The Sora porphyry Cu-Mo deposit (Kuznetsk Alatau): Magmatism and effect of mantle plume on the development of ore-magmatic system. Russian Geology and Geophysics, 52: 1553?1562.
[42]  Bierlein F P, Gray D R and Foster D A. 2002. Metallogenic relationships to tectonic evolution: The Lachlan Orogen, Australia. Earth and Planetary Science Letters, 202: 1?13.
[43]  Bourdon B, Ribe N M, Stacke A, Saal A E and Turner S P. 2006. Insights into the dynamics of mantle plumes from uranium-series geochemistry. Nature, 444: 713?717.
[44]  Campbell L S and Henderson P. 1997. Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China. Lithos, 42: 89?103.
[45]  Cao Q, Vanderhilst R D, Dehoop M V and Shim S H. 2011. Seismic imaging of transition zone discontinuities suggests hot mantle west of Hawaii. Science, 332: 1068?1071.
[46]  Chao E C, Back T, Minkin J M and Yinchen R. 1992. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REE-Fe-Nb ore deposit, Inner Mongolia, P.R.C. Applied Geochemistry, 7: 443?458.
[47]  Chen G D. 2000. Diwa theory―Activated tectonics and metallogeny. Hunan: Central South University Press: 1?426.
[48]  Chen Y J, Chen H Y, Zaw K, Pirajno F and Zhang Z J. 2007. Geodynamic setting and tectonic model of skarn gold deposits in China: An overview. Ore Geology Reviews, 31: 139?169.
[49]  Fan H R, Hu F F, Yang K F and Wang K Y. 2006. Fluid unmixing/immiscibility as an ore-forming process in the giant REE-Nb-Fe deposit, Inner Mongolian, China: Evidence from fluid inclusions. Journal of Geochemical Exploration, 89: 104?107.
[50]  Fuller M and Weeks R. 1992. Superplumes and superchrons. Nature, 356: 16?17.
[51]  Geng Y S, Shen Q H and Ren L D. 2010. Late Neoarchean to Early Paleoproterozoic magmatic events and tectonothermal systems in the North China Craton. Acta Petrologica Sinica, 26: 1945?1966.
[52]  Goldfarb R J, Bradley D and Leach D L. 2010. Secular variation in economic geology. Economic Geology, 105: 459?46.
[53]  Goldfarb R J, Groves D I and Gardoll S. 2001. Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18: 1?75.
[54]  Groves D I and Bierlein F P. 2007. Geodynamic settings of mineral deposit systems. Journal of the Geological Society, 164: 19?30.
[55]  Groves D I, Condie K C, Goldfarb R J, Hronsky J M A and Vielreicher R M. 2005. Secular changes in global tectonic processes and their influence on the temporal distribution of gold-bearing mineral deposits. Economic Geology, 100: 203?224.
[56]  Groves D I, Goldfarb R J, Gebre-Mariam M, Hagemann S G and Robert F. 1998. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13: 7?27.
[57]  Gurnis M. 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature, 332: 695?699.
[58]  Halverson G P, Poitrasson F, Hoffman P F, Nédélec A, Montel J M and Kirby J. 2011. Fe isotope and trace element geochemistry of the Neoproterozoic syn-glacial Rapitan iron formation. Earth and Planetary Science Letters, 309: 100?112.
[59]  Hammond A L. 1975. Minerals and plate tectonics: A conceptual revolution. Science, 5: 779?781.
[60]  Hand M, Reid A and Jagodzinski L. 2007. Tectonic framework and evolution of the gawler craton, Southern Australia. Economic Geology, 102: 1377?1395.
[61]  Hitzman M W, Oreskes N and Einaudi M T. 1992. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58: 241?287.
[62]  Hoa T T, Izokh A E, Polyakov G V, Borisenko A S, Anh T T, Balykin P A, Phuong N T, Rudnev S N, Van V V and Nien B A. 2008. Permo-Triassic magmatism and metallogeny of Northern Vietnam in relation to the Emeishan plume. Russian Geology and Geophysics, 49: 480?491.
[63]  Kesler S E. 1997. Metallogenic evolution of convergent margins: Selected ore deposit models. Ore Geology Reviews, 12: 153?171.
[64]  Klein C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90(10): 1473?1499.
[65]  Laznicka P. 2010. Geological divisions that contain ore giants: Introduction and the role of mantle // Laznicka P. Giant Metallic Deposits. Springer-Verlag Berlin Heidelberg: 69?80.
[66]  Leach D L, Bradley D C, Huston D, Pisarevsky S A and Taylor R. 2010. Sediment-hosted lead-zinc deposits in earth history. Economic Geology, 105: 593?625.
[67]  Li H M, Zhang Z J, Li L X, Zhang Z C, Chen J and Yao T. 2014b. Types and general characteristics of the BIF-related iron depositsin China. Ore Geology Reviews, 57: 264?287.
[68]  Li J W, Li Z K, Zhou M F, Chen L, Bi S J, Deng X D, Qiu H N, Cohen B, Selby D and Zhao X F. 2012a. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between rraton reactivation and gold veining. Economic Geology, 107: 43?79.
[69]  Li S R and Santosh M. 2014. Metallogeny and craton destruction: Records from the North China craton. Ore Geology Reviews, 56: 376?414.
[70]  Li S R, Santosh M, Zhang H F, Luo J Y, Zhang J Q, Li C L, Song J Y and Zhang X B. 2014a. Metallogeny in response to lithospheric thinning and craton destruction: Geochemistry and U-Pb zircon chronology of the Yixingzhai gold deposit, central North China Craton. Ore Geology Reviews, 56: 457?471.
[71]  Li X H, Li Z X, He B, Li W X, Li Q L, Gao Y Y and Wang X C. 2012b. The Early Permian active continental margin and crustal growth of the Cathaysia Block: In situ U-Pb, Lu-Hf and O isotope analyses of detrital zircons. Chemical Geology, 328: 195?207.
[72]  Li Z X, Bogdanova S V, Collins A S, Davidson A, De W B, Ernst R E, Fitzsimons I C W, Fuck R A, Gladkochub D P, Jacobs J, Karlstrom K E, Lu S, Natapov L M, Pease V, Pisarevsky S A, Thrane K and Vernikovsky V. 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research, 160: 179?210.
[73]  Li Z X, Li X H, Kinny P D and Wang J. 1999. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth and Planetary Science Letters, 173: 171?181.
[74]  Li Z X, Li X H, Kinny P D, Wang J, Zhang S and Zhou H. 2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Research, 122(1?4), 85?109.
[75]  Li Z X, Li X H, Zhou H W and Kinny P D. 2002. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 30: 163?166.
[76]  Li Z X, Zhang L and Powell C M A. 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23: 407?410.
[77]  Ling M X, Liu Y L, Williams I S, Teng F Z, Yang X Y, Ding X, Wei G J, Xie L H, Deng W F and Sun W D. 2013. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Scientific Reports, 3 (1776): 1?8.
[78]  Nance R D, Murphy J B and Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Research, 25: 4?29.
[79]  Pirajno F. 2000. Ore Deposits and Mantle Plumes. Dordrecht, Netherland: Kluwer Acad: 1?556.
[80]  Pirajno F. 2009. Hydrothermal Processes and Mineral Systems. Berlin: Springer: 1?1250.
[81]  Pirajno F. 2013a. North China and Tarim cratonic blocks // Pirajno F. The Geology and Tectonic Settings of China’s Mineral Deposits. Dordrecht: Springer Science +Business Media: 35?126.
[82]  Pirajno F. 2013b. Yangtze Craton, Cathaysia and the South China block // The Geology and Tectonic Settings of China’s Mineral Deposits. Dordrecht: Springer Science+Business Media: 127?242.
[83]  Pirajno F, Ernst R E, Borisenko A S, Fedoseev G and Naumov E A. 2009. Intraplate magmatism in central Asia and China and associated metallogeny. Ore Geology Reviews, 35: 114?136.
[84]  Pirajno F and Hoatson D M. 2012. A review of Australia’s large igneous provinces and associated mineral systems: Implications for mantle dynamics through geological time. Ore Geology Reviews, 48: 2?54.
[85]  Rasmussen B, Fletcher I R, Bekker A, Muhling J R, Gregory C J and Thorne A M. 2012. Deposition of 1.88-billion- year-old iron formations as a consequence of rapid crustal growth. Nature, 484: 498?501.
[86]  Santosh M and Pirajno F. 2014. Ore deposits in relation to solid earth dynamics and surface environment: Preface. Ore Geology Reviews, 56: 373?375.
[87]  Schilling J G. 1973. Iceland mantle plume: Geochemical study of Reykjanes ridge. Nature, 242: 565?571.
[88]  ?ener A K, Young C, Groves D I, Krape? B and Fletcher I R. 2005. Major orogenic gold episode associated with Cordilleran-style tectonics related to the assembly of Paleoproterozoic Australia? Geology, 33: 225?228.
[89]  Sheth H C. 1999. Flood basalts and large igneous provinces from deep mantle plumes: Fact, fiction and fallacy. Tectonophysics, 311: 1?29.
[90]  Shi D N, Lü Q T, Xu W Y, Yan J Y, Zhao J H, Dong S W, Chang Y F and SinoProbe-03-02 team. 2013. Crustal structure beneath the middle-lower Yangtze metallogenic belt in East China: Constraints from passive source seismic experiment on the Mesozoic intra-continental mineralization. Tectonophysics, 606: 48?59.
[91]  Shirey S B and Richardson S H. 2011. Start of the Wilson cycle at 3 Ga shown by diamonds from subcontinental mantle. Science, 333: 434?436.
[92]  Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 67: 184?197.
[93]  Sillitoe R H. 2010. Porphyry copper systems. Economic Geology, 105: 3?41.
[94]  Slack J F, Grenne T, Bekker A, Rouxel O J and Lindberg P A. 2007. Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and Fe formation related to sea?oor-hydrothermal sul?de deposits, central Arizona, USA. Earth and Planetary Science Letters, 255: 243?256.
[95]  Stein M and Hofmann A W. 1994. Mantle plume and episodic crustal growth. Nature, 372: 63?68.
[96]  Stern R J, Avigad D, Miller N R and Beyth M. 2006. Evidence for the Snowball Earth hypothesis in the Arabian-Nubian Shield and the East African Orogen. Journal of African Earth Sciences, 44: 1?20.
[97]  Wang E D, Xia J M, Fu J F, Jia S S and Men Y K. 2014b. Formation mechanism of Gongchangling high-grade magnetite deposit hosted in Archean BIF, Anshan- Benxi area, Northeastern China. Ore Geology Reviews, 57: 308?321.
[98]  Wang J, Tatsumoto M, Li X, Premo W R and Chao E C T. 1994. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China. Geochimica et Cosmochimica Acta, 58: 3155?3169.
[99]  Wang K Y, Fan H R, Yang K F, Hu F F and Ma Y G. 2010. Bayan Obo Carbonatites: Texture evidence from polyphase intrusive and extrusive carbonatites. Acta Geologica Sinica, 84: 1365?1376.
[100]  Wang Y J, Fan W M, Zhang G W and Zhang Y H. 2013. Phanerozoic tectonics of the South China Block: Key observations and controversies. Gondwana Research, 23: 1273?1305.
[101]  Wang Y J, Zhang A M, Fan W M, Zhao G C, Zhang G W, Zhang Y Z, Zhang F F and Li S Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: Geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos, 127(1?2): 239?260.
[102]  Wilkinson J J. 2013. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature, 6: 917?925.
[103]  Williams P J, Barton M D and Johnson D A. 2005. Iron oxide copper-gold deposits: Geology, space-time distribution, and possibles mode of origin. Economic Geology, 100: 371?405.
[104]  Wilson J T. 1963. A possible origin of the Hawaiian islands. Canadian Journal of Physics, 41: 863?870.
[105]  Wolfe C, Bjarnason I and Vandecar J C. 1997. Seismic structure of the Iceland mantle plume. Nature, 385: 245?247.
[106]  Wu C Y. 2008. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource Geology, 58: 348?354.
[107]  Xu C. 2008. Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos, 106: 12?24.
[108]  Xu C. 2012. Comparison of fluorite geochemistry from REE deposits in the Panxi region and Bayan Obo, China. Journal of Asian Earth Sciences, 57: 76?89.
[109]  Xu D R, Wang Z L, Cai J X, Wu C J, Bakun-Czubarow N, Wang L, Chen H Y, Baker M J and Kusiak M A. 2013. Geological characteristics and metallogenesis of the Shilu Fe-ore deposit in Hainan Province, South China. Ore Geology Reviews, 53: 318?342.
[110]  Xu D R, Wang Z L, Chen H Y, Hollings P, Jansend N H, Zhang Z C and Wu C J. 2014. Petrography and geochemistry of the Shilu Fe-Co-Cu ore district, South China: implications for the origin of a Neoproterozoic BIF system. Ore Geology Reviews, 57: 322?350.
[111]  Xu D R, Kusiak M A, Wang Z L, Chen H Y, Bakun-Czubarow N, Wu C J, Kone?n? P, Hollings P. 2015. Microstructural observation and chemical dating on monazite from the Shilu Group, Hainan Province of South China: Implications for origin and evolution of the Shilu Fe-Co-Cu ore district. Lithos, 216?217: 158?177.
[112]  Xu D R, Xia B and Nonna B C. 2008. Geochemistry and Sr-Nd isotope systematics of metabasites in the Tunchang area, Hainan Island, South China: implications for petrogenesis and tectonic setting. Mineralogy and Petrology, 92: 361?391.
[113]  Xu Y G, He B and Chung S L. 2004. The geologic, geochemical and geophysical consequences of plume involvement in the Emeishan flood basalt province. Geology, 30(10): 917?920.
[114]  Yang X M and Le Bas M J. 2004. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: Implications for petrogenesis. Lithos, 72: 97?116.
[115]  Yang X M, Yang X Y, Zheng Y F and Le Bas M J. 2003. A rare earth element-rich carbonatite dyke at Bayan Obo, Inner Mongolia, North China. Mineralogy and Petrology, 78: 93?110.
[116]  Yang X Y, Sun W D, Zhang Y X and Zheng Y F. 2009. Geochemical constraints on the genesis of the Bayan Obo Fe-Nb-REE deposit in Inner Mongolia, China. Geochimica et Cosmochimica Acta, 73: 1417?1435.
[117]  Yang Z M and Woolley A. 2006. Carbonatites in China: A review. Journal of Asian Earth Sciences, 27: 559?575.
[118]  Yarmolyuk V V and Kuzmin M I. 2012. Late Paleozoic and Early Mesozoic Rare-Metal magmatism of Central Asia: Stages, provinces, and formation settings. Geology of Ore Deposits, 54: 313?333.
[119]  Yuan Z X, Bai G, Wu C Y, Zhang Z Q and Ye X J. 1992. Geological features and genesis of the Bayan Obo REE Ore Deposit, Inner-Mongolia, China. Applied Geochemistry, 7: 429?442.
[120]  Zaw K, Meffre S, Lai C K, Burrett C, Santosh M, Graham I, Manaka T, Salam A, Kamvong T and Cromie P. 2014. Tectonics and metallogeny of mainland Southeast Asia―A review and contribution. Gondwana Research, 26(1): 5?30.
[121]  Zhao G C, Cawood P A, Wilde S A, Sun M and Lu L Z. 1999. Thermal evolution of two textural types of mafic granulites in the North China craton: Evidence for both mantle plume and collisional tectonics. Geological Magazine, 136: 223?240.
[122]  Zhao G C, Sun M, Wilde S A and Li S Z. 2004. A Paleo-Mesoproterozoic supercontinent assembly growth and breakup. Earth-Science Review, 67: 91?123.
[123]  Webber A P, Roberts S, Taylor R N and Pitcairn I K. 2013. Golden plumes: Substantial gold enrichment of oceanic crust during ridge-plume interaction. Geology, 41: 87?90.
[124]  Xu D R, Xia B and Li P C. 2007. Protolith natures and U-Pb SHRIMP zircon ages of the metabasites in Hainan Island, South China: Implications for geodynamic evolution since the Precambrian. The Island Arc, 16: 575?597.
[125]  Zaw K, Peters S G, Cromie P, Burrett C and Hou Z Q. 2007. Nature, diversity of deposit types and metallogenic relations of South China. Ore Geology Reviews, 31: 3?47.
[126]  Zhai M G and Santosh M. 2013. Metallogeny of the North China Craton: Link with secular changes in the evolving Earth. Gondwana Research, 24: 275?297.
[127]  Zhang C L, Li Z X, Li X H, Xu Y G, Zhou G and Ye H M. 2010. A Permian large igneous province in Tarim and Central Asian orogenic belt, NW China: Results of a ca. 275 Ma mantle plume? GSA Bulletin, 122: 2020?2040.
[128]  Zhang P S, Tao K J, Yang Z M, Yang X M and Song R K. 2002. Rare earths, niobium and tantalum minerals in Bayan Obo ore deposit and discussion on their genesis. Journal of Rare Earths, 20: 81?86.
[129]  Zhang Q R, Chu X L and Feng L J. 2011. Neoproterozoic glacial records in the Yangtze Region, China // Arnaud E, Halverson G P and Shields-Zhou G. The Geological Record of Neoproterozoic Glaciations. Geological Society of London, 36: 357?366.
[130]  Zhang Z C, Hou T, Santosh M, Li H M, Li J W, Zhang Z H, Song X Y and Wang M. 2014. Spatio-temporal distribution and tectonic settings of the major iron deposits in China: An overview. Ore Geology Reviews, 57: 247?263.
[131]  Zhao D P. 2001. Seismic structure and origin of hotspots and mantle plumes. Earth and Planetary Science Letters, 192: 251?265.
[132]  Zhao G C and Cawood P A. 2012. Precambrian geology of China. Precambrain Research, 222?223: 13?54.
[133]  陈国达. 1956. 中国地台“活化区”的实例并着重讨论“华夏大陆”问题. 地质学报, 36(3): 239?272.
[134]  陈国达. 1959a. 大陆地壳第三基本构造单元――地洼区. 科学通报, 4(3): 94?95.
[135]  陈国达. 1959b. 地壳动“定”转化递进论――论地壳发展的一般规律. 地质学报, 29(3): 279?292.
[136]  陈国达. 1959c. 地台活化及其找矿意义. 科学通报, 4(12): 398?400.
[137]  陈国达. 1987. 成矿学及其在中国加强研究的必要性. 大地构造与成矿学, 11(2): 105?113.
[138]  陈国达. 1996. 地洼学说――活化构造及成矿理论体系概论. 湖南: 中南工业大学出版社: 1?454.
[139]  陈国达. 2000. 关于多因复成矿床的一些问题. 大地构造与成矿学, 24(3): 199?201.
[140]  陈国能, 陈震, 陈雄, 丁汝鑫, 彭卓伦, Rodney Grapes, 张珂, 王岳军, 娄峰, 沈文杰, 郑义, 张俊浩, 丘惟, 许清燕, 王勇. 2015. 壳内熔融与大陆造山. 大地构造与成矿学, 39(3): 383?390.
[141]  陈伍勤. 1987. 地洼学说在地质找矿中的应用. 大地构造与成矿学, 11(3): 271?273.
[142]  胡瑞忠, 毛景文, 毕献武, 彭建堂, 宋谢炎, 钟宏, 陶琰, 谢桂青. 2008. 浅谈大陆动力学与成矿关系研究的若干发展趋势. 地球化学, 37(4): 344?352.
[143]  胡瑞忠, 陶琰, 钟宏, 黄智龙, 张正伟. 2005. 地幔柱成矿系统: 以峨眉山地幔柱为例. 地学前缘, 12(1): 42?54.
[144]  李江海, 牛向龙, 程素华, 钱祥麟. 2006. 大陆克拉通早期构造演化历史探讨以华北为例. 地球科学, 31(3): 285?293.
[145]  李文渊, 牛耀龄, 张照伟, 张铭杰, 高永宝, 胡沛青, 张江伟, 谭文娟, 姜寒冰. 2012. 新疆北部晚古生代大规模岩浆成矿的地球动力学背景和战略找矿远景. 地学前缘, 19(4): 41?50.
[146]  彭省临, 刘亮明, 赖健清. 2001. 多因复成矿床成矿理论在地洼区隐伏矿床定位预测中的关键作用. 大地构造与成矿学, 25(会议专辑): 1?4.
[147]  舒见闻, 彭国忠. 1986. 湖南花垣县渔塘铅锌矿床――运用地洼学说成矿学找寻富矿的体会. 大地构造与成矿学, 10(4): 359?367.
[148]  童航寿. 2010. 华南地幔柱构造与成矿. 铀矿地质, 26(2): 65?72.
[149]  王守伦. 1986. 鞍本地区鞍山群富铁矿成因类型的讨论. 矿床地质, 5(4): 14?23.
[150]  肖龙, Pirajno F, 何琦. 2007. 试论大火成岩省与成矿作用. 高校地质学报, 13(2): 148?160.
[151]  许德如, 肖勇, 夏斌, 蔡仁杰, 侯威, 王力, 刘朝露, 赵斌. 2009. 海南石碌铁矿床成矿模式与找矿预测. 地质出版社: 1?331.
[152]  杨奎锋, 范宏瑞, 胡芳芳, 李向辉, 柳建勇, 赵永岗, 刘爽, 王凯怡. 2007. 白云鄂博展巨型REE-Nb-Fe矿区矽卡岩化时代: 单颗粒金云母Rb-Sr法定年. 岩石学报, 23(5) : 1018?1022.
[153]  杨奎锋, 范宏瑞, 胡芳芳, 王凯怡. 2010. 白云鄂博地区碳酸岩脉侵位序列与稀土元素富集机制. 岩石学报, 26(5): 1523?1529.
[154]  Barley M E, Krapez B, Groves D I and Kerrich R. 1998. The Late Archean bonanza: Metallogenic and environmental consequences of ther interaction between mantle plumes, lithospheric tectonics and global cyclicity. Precambrian Research, 91: 65?90
[155]  Begg G C, Hronsky, Jon A M, Arndt N T, Griffin W L, O’Reilly S Y and Hayward N. 2010. Lithospheric, cratonic, and geodynamic setting of Ni-Cu-PGE sulfide deposits. Economic Geology, 105: 1057?1070.
[156]  Bekker A, Slack J F, Planavsky N, Krape? B, Hofmann A, Konhauser K O and Rouxel O J. 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology, 105: 467?508.
[157]  Berge J. 2013. Likely “mantle plume” activity in the Skellefte district, Northern Sweden. A reexamination of mafic/ultramafic magmatic activity: Its possible association with VMS and gold mineralization. Ore Geology Reviews, 55: 64?79.
[158]  Bradley D C and Leach D L. 2003. Tectonic controls of Mississippi Valley-type lead-zinc mineralisation in orogenic forelands. Mineralium Deposita, 38: 652?667.
[159]  Bunge H P, Richards M A and Baumgardner J R. 1996. Effect of depth-dependent viscosity on the planform of mantle convection. Nature, 379: 436?438.
[160]  Chiaradia M D and Banks. 2006. Origin of fluids in iron oxide-copper-gold deposits: Constraints from δ37Cl, 87Sr/86Sri and Cl/Br. Mineralium Deposita, 41(6): 565?573.
[161]  Condie K C. 2000. Episodic continental growth models: After thoughts and extensions. Tectonophysics, 322: 153?162.
[162]  Condie K C. 2001. Mantle Plumes and Their Record in Earth History. Oxford, UK: Cambridge University Press: 1?306.
[163]  Conrad C P, Steinberger B and Torsvik T H. 2013. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature, 498: 479?482.
[164]  Cooke D R, Hollings P and Walshe J L. 2005. Giant porphyry deposits: characteristics, distribution, and tectonic controls. Economic Geology, 100: 801?818.
[165]  Corbett G J and Leach T M. 1998. Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization. Society of Economic Geologists Special Publication, 6: 1?240.
[166]  Courtillot V and Olson P. 2007. Mantle plumes link magnetic superchrons to phanerozoic mass depletion events. Earth and Planetary Science Letters, 260: 495?504.
[167]  Cox K G. 1991. A superplume in the mantle. Nature, 352: 564?565.
[168]  Deb M. 2014. Precambrian geodynamics and metallogeny of the Indian shield. Ore Geology Reviews, 57: 1?28.
[169]  Deng J, Wang Q F, Li G J, Li C S and Wang C M. 2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419?437.
[170]  DePaolo D J and Manga M. 2003. Deep Origin of Hotspots―the Mantle Plume Model. Science, 300: 920?921.
[171]  Dobretsov N L and Buslov M M. 2011. Problems of geodynamics, tectonics, and metallogeny of orogens. Russian Geology and Geophysics, 52: 1505?1515.
[172]  Drew L J, Qingrun M and Weijun S. 1990. The Bayan Obo iron rare-earth niobium deposits, Inner-Mongolia, China. Lithos, 26: 43?65.
[173]  Griffin W L, Begg G C and O’Reilly S Y. 2013. Continental- root control on the genesis of magmatic ore deposits. Nature Geoscience, 6: 905?910.
[174]  Griffiths R W and Campbell I H. 1990. Stirring and structure in mantle starting plumes. Earth and Planetary Science Letters, 99: 66?78.
[175]  Hoffman P F, Kaufman A J, Halverson G P and Schrag D P. 1998. A Neoproterozoic snowball Earth. Science, 281: 1342?1346.
[176]  Hofmann A W. 1997. Mantle chemistry: The message from oceanic volcanism. Nature, 385: 219?229.
[177]  Hou Z Q and Cook N J. 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geology Reviews, 36: 2?24.
[178]  Hou Z Q, Pan G T, Mo X X, Xu Q, Hu Y Z and Li X Z. 2007. The Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epoch and deposit type. Ore Geology Reviews, 31: 48?87.
[179]  Hou Z Q, Zhang H R, Pan X F and Yang Z M. 2011. Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: Examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews, 39: 21?45.
[180]  Hu R Z, Bi X W, Zhou M F, Peng J T, Su W C, Liu S and Qi H W. 2008. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Economic Geology, 103: 583?598.
[181]  Isley A E and Abbott D H. 1999. Plume-related mafic volcanism and the deposition of banded iron formation. Journal of Geophysical Research, 104: 15, 461?15, 477.
[182]  Kerr R A. 2003. Plumes from the core lost and found. Science, 299: 35?36.
[183]  Kerrich R, Goldfarb R, Groves D and Garwin S. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Science in China (Series D), 43: 1?68.
[184]  Le Bas M J, Spiro B and Yang X M. 1997. Oxygen, carbon and strontium isotope study of the carbonatitic dolomite host of the Bayan Obo Fe-Nb-REE deposit, Inner Mongolia, N China. Mineralogical Magazine, 61: 531?541.
[185]  Love D A, Clark A H and Glover J K. 2004. The lithologic, stratigraphic, and structural setting of the giant antamina copper-zinc skarn deposit, Ancash, Peru. Economic Geology, 99: 887?916.
[186]  Mao J W, Pirajno F, Lehmann B, Luo M C and Berzina A. 2014. Distribution of porphyry deposits in the Eurasian continent and their corresponding tectonic settings. Journal of Asian Earth Sciences, 79: 576?584.
[187]  Mao J W, Pirajno F, Xiang J F, Gao J J, Ye H S, Li Y F and Guo B J. 2011. Mesozoic molybdenum deposits in the east Qinling-Dabie orogenic belt: Characteristics and tectonic settings. Ore Geology Reviews, 43: 264?293.
[188]  Mao J W, Pirajno F, Zhang Z H, Chai F M, Wu H, Chen S P, Cheng L S, Yang J M and Zhang C Q. 2008a. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes. Journal of Asian Earth Sciences, 32: 184?203.
[189]  Mao J W, Xie G Q and Bierlein F. 2008b. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the East Qinling-Dabie orogenic belt. Geochimica Cosmochimica Acta, 72: 4607?4626.
[190]  Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1?33.
[191]  Mitrofanov F P, Bayanova T B, Korchagin A U, Groshev N Yu, Malitchb K N, Zhirov D V and Mitrofanov A F. 2013. East Scandinavian and Noril’sk plume mafic large igneous provinces of Pd-Pt ores: Geological and metallogenic comparison. Geology of Ore Deposits, 55: 305?319.
[192]  Morgan J P, Hasenclever J and Shi C. 2013. New observational and experimental evidence for a plume- fed asthenosphere boundary layer in mantle convection. Earth and Planetary Science Letters, 366: 99?111.
[193]  Morgan W J. 1971. Convection plumes in the lower mantle. Nature, 230: 42?43.
[194]  Munteanu M, Yao Y, Wilson A H, Chunnett G, Luo Y N, He H, Cioac? M and Wen M L. 2013. Panxi region (South- West China): Tectonics, magmatism and metallogenesis. A review. Tectonophysics, 608: 51?71.
[195]  Nataf H C and VanDecar J. 1993. Seismological detection of a mantle plume? Nature, 364: 115?120.
[196]  Nelson J, Paradis S, Christensen J and Gabites J. 2002. Canadian Cordilleran Mississippi valley-type deposits: A case for Devonian-Mississippi back-arc hydrothermal origin. Economic Geology, 97: 1013?1036.
[197]  Richards J P. 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98: 1515?1533.
[198]  Richards J P. 2013. Giant ore deposits formed by optimal alignments and combinations of geological processes. Nature Geoscience, 6: 911?916.
[199]  Richards J P, Boyce A J and Pringle M S. 2001. Geological evolution of the Escondida area, northern Chile: A model for spatial and temporal localization of porphyry Cu mineralization. Economic Geology, 96: 271?305.
[200]  Sawkins F J. 1984. Metal Deposits in Relation to Plate Tectonics. Berlin: Springer: 1?261.
[201]  Smith M and Spratt J. 2012. The chemistry of Niobium mineralisation at Bayan Obo, Inner Mongolia, China: Constraints on the hydrothermal precipitation and alteration of Nb-Minerals. Acta Geologica Sinica, 5: 006.
[202]  Smith M P. 2007. Metasomatic silicate chemistry at the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China: Contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos, 93: 126?148.
[203]  Stadler G, Gurnis M, Burstedde C, Wilcox L C, Alisic L and Ghattas O. 2010. The dynamics of plate tectonics and mantle flow: From local to global scales. Science, 329: 1033?1038.
[204]  Storey B C. 1995. The role of mantle plumes in continental breakup: Case histories from Gondwanaland. Nature, 337: 301?308.
[205]  Teixeira J B G, Misi A and Da Silva M da G. 2007. Supercontinent evolution and the Proterozoic metallogeny of South America. Gondwana Research, 11: 346?361.
[206]  Tu G Z. 1998. The unique nature in ore composition, geological background and metallogenic mechanism of non-conventional superlarge ore deposits: A preliminary discussion. Science in China (Series D), 41: 1?6.
[207]  VanDecar J C, James D E and Assump??o M. 1995. Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces. Nature, 378: 25?31.
[208]  Vos I M A, Bierlein F P and Phillips D. 2007. The Palaeozoic tectono-metallogenic evolution of the northern Tasman Fold Belt System, Australia: Interplay of subduction rollback and accretion. Ore Geology Reviews, 30: 277?296.
[209]  Wang C M, Deng J, Carranza E J M and Lai X Y. 2014a. Nature diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews, 56: 327?351.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133