全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

新疆阿舍勒VMS型铜锌矿床元素活化富集作用初步研究

DOI: 10.16539/j.ddgzyckx.2015.03.015, PP. 542-550

Keywords: 流体包裹体,矿石结构构造,活化富集,阿舍勒铜锌矿床

Full-Text   Cite this paper   Add to My Lib

Abstract:

新疆阿舍勒铜锌矿床位于阿尔泰增生型造山带南缘阿舍勒盆地内,受褶皱控制的透镜状矿体产于阿舍勒组地层中,矿体与围岩一起发生协和变形。成矿过程可分为两个成矿期:以条带状?块状矿石为代表的VMS成矿期和以脉状矿石为代表的热液成矿期。局部可见脉状矿石切穿条带状矿石,表明热液成矿期明显晚于VMS成矿期。大部分VMS成矿期矿石同生沉积特征保存较好。脉状矿石穿插条带状矿石时,会出现硫化物矿物颗粒变粗的现象,并伴随定向构造、压力影构造、碎裂结构、变斑晶结构、交代残余结构和港湾交代结构等现象。以上证据表明,后期变质变形导致矿石中局部硫化物品位提高。脉状矿石中的石英广泛发育流体包裹体,可分为水溶液包裹体(W型)、纯CO2包裹体(PC型)、CO2-H2O包裹体(C型)及含子矿物多相包裹体(S型)四类。显微测温表明,均一温度集中在220~280℃,流体盐度集中于4%~8%NaCleqv之间。激光拉曼结果证实,流体包裹体中普遍富含CO2,甚至出现少量纯液相和纯气相的CO2包裹体。脉状矿石成矿流体具有中温、低盐度和富CO2的特征,与造山型金矿的变质流体特征一致。联系区域构造演化历史,晚古生代洋陆俯冲背景有利于形成VMS型矿石,而印支期碰撞拼贴过程的变形?变质流体作用导致阿舍勒铜锌矿床进一步加富。因此,新疆阿舍勒铜锌矿可作为变质加富VMS型矿床的典例,区域上火山岩地层和褶皱复合部位是寻找此类矿床的理想靶区。

References

[1]  常海亮. 1997. 新疆阿舍勒1号铜锌矿床流体包裹体特征及时序关系. 华南地质与矿产, 3: 23?32.
[2]  陈国达, 杨心宜. 2003. 活化构造成矿学. 长沙: 湖南教育出版社.
[3]  陈衍景, 倪培, 范宏瑞, Pirajno F, 赖勇, 苏文超, 张辉. 2007. 不同类型热液金矿系统的流体包裹体特征. 岩石学报, 23(9): 2085?2108.
[4]  陈毓川, 叶庆同, 冯京, 牟传林, 周良仁, 王全明, 黄光昭, 庄道泽, 任秉琛. 1996. 阿舍勒铜锌成矿带成矿条件和成矿预测. 北京: 地质出版社: 1?330.
[5]  邓小华, 李文博, 李诺, 糜梅, 张颖. 2008. 河南嵩县纸房钼矿床流体包裹体研究及矿床成因. 岩石学报, 24(9): 2133?2148.
[6]  邓小华, 糜梅, 李文博. 2009. 河南土门萤石脉型钼矿床流体包裹体研究及成因探讨. 岩石学报, 25(10): 2537?2549.
[7]  范宏瑞, 谢奕汉, 翟明国, 金成伟. 2003. 豫陕小秦岭脉状金矿床三期流体运移成矿作用. 岩石学报, 19(2): 260?266.
[8]  耿新霞, 杨富全, 杨建民, 郭正林, 郭旭吉, 黄承科, 刘锋, 柴凤梅, 张志欣. 2010. 新疆阿尔泰铁木尔特铅锌矿床稳定同位素组成特征. 矿床地质, 29(6): 1088?1100.
[9]  顾连兴, 汤晓茜, 郑远川, 吴昌志, 田泽满, 陆建军, 肖新建, 倪培. 2004. 辽宁红透山块状硫化物矿床的变质变形和成矿组分再活化. 岩石学报, 20(4): 923?934.
[10]  沈远超, 申萍, 李光明, 曾庆栋, 刘铁兵. 2007. 新疆额尔齐斯金矿带构造控矿规律研究. 矿床地质, 26(1): 33?42.
[11]  王登红. 1996. 新疆阿舍勒火山岩型块状硫化物铜矿硫、铅同位素地球化学. 地球化学, 25(6): 582?590.
[12]  王京彬, 秦克章, 吴志亮, 胡剑辉, 邓吉牛. 1998. 阿尔泰山南缘火山喷流沉积型铅锌矿床. 北京: 地质出版社: 1?210.
[13]  徐九华, 林龙华, 王琳琳, 褚海霞, 卫晓峰, 陈栋梁. 2009. 阿尔泰克兰盆地VMS矿床的变形变质与碳质流体特征. 矿床地质, 28(5): 585?598.
[14]  徐九华, 谢玉玲, 丁汝福, 阴元军, 单立华, 张国瑞. 2007. CO2-CH4流体与金成矿作用: 以阿尔泰山南缘和穆龙套金矿为例. 岩石学报, 23(8): 2026?2032.
[15]  张莉, 刘春发, 武广. 2009. 新疆望峰金矿床流体包裹体地球化学及矿床成因. 岩石学报, 25(6): 1465?1473.
[16]  郑义. 2013. 中亚造山带二叠?三叠纪造山过程与成矿作用――以阿尔泰南缘4个多金属硫化物矿床为例. 广州: 中国科学院广州地球化学研究所博士论文: 1?243.
[17]  郑义, 张莉, 郭正林. 2013. 新疆铁木尔特铅锌铜矿床锆石U-Pb和黑云母40Ar/39Ar年龄及其矿床成因意义. 岩石学报, 29(1): 191?204.
[18]  Bodnar R J. 1993. Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683?684.
[19]  Brown P E and Lamb W M. 1989. P-V-T properties of fluids in the system H2O±CO2±NaCl: New graphic presentations and implications for fluid inclusion studies. Geochimica et Cosmochim Acta, 53: 1209?1221.
[20]  Collins P L F. 1979. Gas hydrates in CO2-bearing fluid inclusions and use freezing data for estimation of salinity. Economic Geology, 74: 1435?1444.
[21]  Cook N J, Klemd R and Okrusch M. 1994. Sulphide mineralogy, metamorphism and deformation in the Matchless massive sulphide deposit, Namibia. Mineralium Deposita, 29: 1?15.
[22]  Frankin J M, Gibson H L, Jonasson I R and Galley A G. 2005.Volcanogenic massive sulfide deposits. Economic Geology 100th Anniversary Volume: 523?560.
[23]  Gu L X, Zheng Y C, Tang X Q, Fernando D P, Wu C Z, Tian Z M, Lu J J, Ni P, Li X and Yang F T. 2007. Copper, gold and silver enrichment in ore mylonites within massive sulphide orebodies at Hongtoushan, NE China. Ore Geology Reviews, 30: 1?29.
[24]  Luders V, Pracejus B and Halbach P. 2001. Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE Hydrothermal field (Central Okinawa trough, Japan). Chemical Geology, 173: 45?58.
[25]  Marshall B, Vokes F M and Larocque A C L. 2000. Regional metamorphic remobilisation: Upgrading and formation of ore deposits. // Spry P G, Marshall B and Vokes F M. Metamorphosed and Metamorphogenic Ore Deposits, Reviews in Economic Geology, 11: 19?38.
[26]  Pirajno F. 2009. Hydrothermal Processes and Mineral System. Perth, Australia: Springer Press: 1?1250.
[27]  Theart H F J, Ghavami-Riabi Mouri H and Graser P. 2010. Applying the box plot to the recognition of footwall alteration zones related to VMS deposits in a high-grade metamorphic terrain, South Africa, a lithogeochemical exploration application. Geochemistry, 71: 143?154.
[28]  Tomkins A G. 2007. Three mechanisms of ore re-mobilization during amphibolite facies metamorphism at the Montauban Zn-Pb-Au-Ag deposit. MineraliumDeposita, 42: 627?637.
[29]  Wan B, Zhang L C and Xiang P. 2010. The Ashele VMS-type Cu-Zndeposit in Xinjiang, NW China formed in a rifted arc setting. Resource Geology, 60(2): 150?164.
[30]  Xu J H, Ding R F, Xie Y L, Zhong C H and Shan L H. 2008. The source of hydrothermal ?uids for the Sarekoubu gold deposit in the southern Altai, Xinjiang, China: Evidence from ?uid inclusions and geochemistry. Journal of Asian Earth Sciences, 32: 247?258.
[31]  Xu J H, Hart C, Wang L L, Chu H X, Ling L H and Wei X F. 2011. Carbonic fluid overprints in VMS mineralization: Examples from the Kelan Volcanic Basin, Altaids, China. Economic Geology, 106: 145?158.
[32]  Zhang L, Zheng Y and Chen Y J. 2012. Ore geology and fluid inclusion geochemistry of the Tiemurt Pb-Zn-Cu deposit, Altay, Xinjiang, China: A case study of orogenic-type Pb-Zn systems. Journal of Asian Earth Sciences, 49: 69?79.
[33]  Zhang Y J, Sun F Y, Li B L, Huo L and Ma F. 2014. Ore textures and remobilization mechanisms of the Hongtoushan copper-zinc deposit, Liaoning, China. Ore Geology Reviews, 57: 78?86.
[34]  Zheng Y, Zhang L, Chen Y J, Pete H and Chen H Y. 2013. Metamorphosed Pb-Zn-(Ag) ores of the Keketale VMS deposit, Xinjiang: Evidence from ore textures, fluid inclusions, geochronology and pyrite compositions. Ore Geology Reviews, 54: 167?180.
[35]  Zheng Y, Zhang L, Chen Y J, Qin Y J and Liu C F. 2012.Geology, fluid inclusion geochemistry, and 40Ar/39Ar geochronology of the Wulasigou Cu deposit, and their implications for ore genesis, Altay, Xinjiang, China.Ore Geology Reviews, 49: 128?140.
[36]  Zhong R C, Li W B, Chen Y J and Huo H L. 2011. Ore-forming conditions and genesis of the Huogeqi Cu-Pb-Zn-Fe deposit in the northern margin of the North China Craton: Evidence from ore petrologic characteristics. Ore Geology Reviews, 44: 107?120.
[37]  陈国达. 1979. 成矿构造研究法. 北京: 地质出版社: 1?412.
[38]  陈国达. 1982. 多因复成矿床并从地壳演化规律看其形成机理. 大地构造与成矿学, 6(1): 1?55.
[39]  陈国达. 1996. 地洼学说――活化构造及成矿理论体系概论. 长沙: 中南工业大学出版社: 193?206.
[40]  陈国达. 2000. 关于多因复成矿床的一些问题. 大地构造与成矿学, 24(3): 199?206.
[41]  李华芹, 谢才富, 常海亮, 蔡红, 朱家平, 周肃. 1998. 新疆北部有色贵金属矿床成矿作用年代学. 北京: 地质出版社: 1?264.
[42]  李晶, 陈衍景, 刘迎新. 2004. 华北克拉通若干脉状金矿的黄铁矿标型特征与流体成矿过程. 矿物岩石, 24(3): 93?102.
[43]  刘斌, 沈昆. 1998. 流体包裹体热力学. 北京: 地质出版社: 1?290.
[44]  刘德权, 唐延龄, 周汝洪. 2005. 中国新疆铜矿床和镍矿床. 北京: 地质出版社: 1?360.
[45]  牛贺才, 于学元, 许继峰, 单强, 陈繁荣, 张海祥, 郑作平. 2006. 中国新疆阿尔泰晚古生代火山作用及成矿. 北京: 地质出版社: 1?184.
[46]  秦克章. 2000. 新疆北部中亚型造山与成矿作用. 北京: 中国科学院地质与地球物理研究所博士后出站报告: 39?61.
[47]  杨富全, 李凤鸣, 秦纪华, 郑开平, 刘锋. 2013. 新疆阿舍勒铜锌矿区(潜)火山岩LA-MC-ICP-MS锆石U-Pb年龄及其地质意义. 矿床地质. 32(5): 869?883.
[48]  张良臣, 刘德权, 王有标, 李庆昌, 李博权, 周汝洪, 邹天人, 唐延龄, 王京彬, 吴乃元, 赵殿甲, 杜佩轩. 2003. 中国新疆优势金属矿产成矿规律. 北京: 地质出版社: 1?405.
[49]  曾乔松, 陈广浩, 王核, 李鹏春. 2005. 基于多因复成矿床理论探讨阿舍勒铜矿的成因. 大地构造与成矿学, 29(4): 545?550.
[50]  Castroviejo B, Quesada C and Soler M. 2011. Post depositional tectonic modification of VMS deposits in Iberia and its economic significance. Mineralium Deposita, 46: 615?637.
[51]  Chen Y J, Pirajno F, Wu G, Qi J P, Xiong X L and Zhang L. 2012. Epithermal deposits in North Xinjiang, NW China. International Journal of Earth Sciences, 101: 889?917.
[52]  Christian M, Bocar D, Michel C, Marie-Chriatine, David B, Serge F and Jean V. 2003. Remobilisation of base metals and gold by Variscan metamorphic fluids in the south Iberian pyrite belt: Evidence from the Tharsis VMS deposit. Chemical Geology, 194: 143?165.
[53]  Zaw K, Huston D L and Large R R. 1999. A chemical model for remobilisation of ore constituents during Devonian replacement process within Cambrian VHMS Rosebery deposit, western Tasmania. Economic Geology, 94: 529?546.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133