全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

藏南冈底斯中段谢通门始新世复式岩体锆石U-Pb年代学、Hf同位素特征及其地质意义

DOI: 10.16539/j.ddgzyckx.2015.05.015, PP. 933-948

Keywords: 冈底斯,谢通门,花岗岩,锆石U-Pb定年,Hf同位素

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文对冈底斯谢通门地区的三个花岗岩体进行了LA-ICP-MS锆石U-Pb定年、Hf同位素分析以及岩体侵位深度研究。研究结果表明,三个岩体的锆石U-Pb同位素年龄分别为43.5±0.6Ma、44.9±0.5Ma和48.3±1.4Ma。锆石的Hf同位素研究显示,样品xy911的εHf(t)值介于?5.1~0.35,为典型的壳幔混合型,Hf同位素的二阶段模式年龄平均值为1142Ma,表明其主要岩浆源区以古老地壳基底的部分熔融为主,在此过程中可能伴有幔源岩浆或新生下地壳的贡献。而样品xy957和样品xy961具有相似的Hf同位素特征,εHf(t)均为正值;样品xy957的εHf(t)值介于0.23~7.31,平均值为5.07,样品xy961的εHf(t)值介于2.12~5.82,平均值为4.70,其二阶段模式年龄平均值分别为764Ma、792Ma,表明它们的源岩以新生地壳的部分熔融为主或有大量幔源物质的加入,同时,也混有少量古老陆壳的成分。根据角闪石压力计计算得出,样品xy911、xy957、xy961侵位深度分别为9.36km、9.53km和10.89km,为中深成侵入相。综合分析表明,谢通门复式岩体主要以新生地壳物质的部分熔融为主,在岩浆演化或上升过程中混染了部分拉萨地体的古老物质;此外该复式岩体的形成可能和新特提斯洋板片的断离引起地幔物质上涌有关。

References

[1]  董汉文, 许志琴, 李源, 刘钊, 李忠海. 2013. 南迦巴瓦构造结墨脱地区高Sr/Y花岗岩的成因: 地球化学、锆石U-Pb年代学及Hf同位素约束. 岩石学报, 29(6): 2013?2023.
[2]  董汉文, 许志琴, 李源, 刘钊. 2014. 东喜马拉雅构造结墨脱地区晚三叠世深熔作用的U-Pb年代限定. 大地构造与成矿学, 38(2): 398?407.
[3]  曾令森, 陈晶, 陈振宇, 刘静, 梁凤华, 高利娥. 2007. 山东石岛花岗岩复合岩体的侵位深度与苏鲁超高压变质岩的快速折返机制及动力学效应. 岩石学报, 23(12): 3171?3179.
[4]  章荣清, 陆建军, 朱金初, 姚 远, 高剑峰, 陈卫锋, 招湛杰. 2010. 湘南荷花坪花岗斑岩锆石LA-MC-ICP-MS U-Pb年龄、Hf同位素制约及地质意义. 高校地质学报, 16(4): 436?447.
[5]  朱弟成, 赵志丹, 牛耀龄, 王青, Yildirim Dilek, 董国臣, 莫宣学. 2012. 拉萨地体的起源和古生代构造演化. 高校地质学报, 18(1): 1?15.
[6]  Aitchison J C, Ali J R and Davis A M. 2007. When and where did India and Asia collide? Journal of Geophysical Research (B Solid Earth), 112(B5): 51?70.
[7]  Chu N C, Taylor R N, Chavagnac V, Nesbitt R W, Boella R M, Milton J A, German C R, Bayong and Burtonk. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: An evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry, 17: 1567?1574.
[8]  Dewey J F, Cande S and Pitman W C. 1989. Tectonic evolution of the India-Eurasia collision zone. Eclogae Geologicae Helvetiae, 82(3): 717?734.
[9]  Dong X, Zhang Z M and Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri group, southern Lhasa Terrane, Tibetan plateau: Implications for Grenvillian and Pan-African Provenance and Mesozoic-Cenozoic Metamorphism. Journal of Geology, 118: 677?690.
[10]  Garzanti E, Baud A and Mascle G. 1987. Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta (Paris), 1(4-5): 297?312.
[11]  Griffin W L, Wang X, Jackson S E, Pearson N J, O’Reilly S Y, Xu X and Zhou X. 2002. Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61: 237?269.
[12]  Ji W Q, Wu F Y, Chung S L, Li J X and Liu C Z. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262: 229?245.
[13]  Jogvan O, Muntener O, Burg J P, Ulmer P and Jagoutz E. 2006. Lower continental crust formation through focused flow in km-scale melt conduits: The zoned ultramafic bodies of the Chilas complex in the Kohistan island arc (NW Pakistan). Earth and Planetary Science Letters, 242(3-4): 320?342.
[14]  Johnson M C and Rutherford M J. 1989. Experimental calibration of the aluminum-in-hornblende geobaro- meter with application to Long Valley caldera (California) volcanic rocks. Geology, 17: 837?841.
[15]  Kinny P D and Maas R. 2003. Lu-Hf and Sm-Nd isotope system in zircon // Hanchar J M and Hoskin P W O. Zircon. Reviews in Mineralogy and Geochemistry, 53: 327?341.
[16]  Knudsen T L, Griffin W L, Hartz E H, Andresen A and Jackson S E. 2001. In-situ hafnium and lead isotope analyses of detrital zircons from the Devonian sedimentary basin of NE Greenland: A record of repeated crustal reworking. Contributions to Mineralogy and Petrology, 141: 83?94.
[17]  Liu Y S, Gao S, Hu Z C, Gao C G, Zong K Q and Wang D B. 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537?571.
[18]  Liu Y S, Hu Z C, Zong K Q, Gao C G, Gao S, Xu J and Chen H H. 2010b. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP- MS. Chinese Science Bulletin, 55(15): 1535?1546.
[19]  Ludwig K R. 2001. Users manual for Isoplot/Ex rev. 2.49. Berkeley Geochronology Centre Special Publication.
[20]  Mo X X, Dong G C, Zhao Z D, Guo T Y, Wang L L and Chen T. 2005. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision: Zircon SHRIMP U-Pb dating. Acta Geologica Sinica, 79(1): 66-76.
[21]  Vervoort J D and Blichert-Toft J. 1999. Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta, 63: 533?556.
[22]  Wen D R, Liu D Y, Chung S L, Chu M F, Ji J Q, Zhang Q, Song B, Lee T Y, Yeh M W and Lo C H. 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neo-tethyan subduction in southern Tibet. Chemical Geology, 252(3-4): 191?201.
[23]  Woodhead J, Hergt J, Shelley M, Eggins S and Kemp R. 2004. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries and concomitant age estimation. Chemical Geology, 209: 121?135.
[24]  Wu F Y, Yang Y H, Xie L W, Yang J H and Xu P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology, 234: 105?126.
[25]  Xu Z Q, Wang Q, Pêcher A, Liang F H, Qi X X, Cai Z H and Cao H. 2013. Orogen-parallel ductile extension and extrusion of the Greater Himalaya in the late Oligocene and Miocene. Tectonics, 32(2): 191?215.
[26]  Yang J H, Wu F Y, Wilde S A, Simo A W, Xie L W, Yang Y H and Liu X M. 2007. Tracing magma mixing in granite genesis: In situ U-Pb dating and Hf-isotope analysis of zircons. Contributions to Mineralogy and Petrology, 153(2): 177?190.
[27]  Yin A and Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogeny. Annual Reviews of Earth and Planet Science Letters, 28: 211?280.
[28]  Zen E A. 1989. Plumbing the depths of batholiths. American Journal of Science, 289: 1137?1157.
[29]  鲍学昭, 李慧民, 陆松年. 1998. 锆石微区拉曼光谱研究及成因标型意义. 地质科学, 22(4): 454?462.
[30]  陈建林, 郭原生, 付善明. 2003. 花岗岩研究进展-ISMA花岗岩分类综述. 甘肃地质学报, 13(1): 67?72.
[31]  陈希节, 许志琴, 孟元库, 贺振宇. 2014. 冈底斯中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约. 岩石学报, 30(8): 2253?2268.
[32]  董国臣, 莫宣学, 赵志丹, 朱弟成, 谢许峰, 董美玲. 2011. 冈底斯带西段那木如岩体始新世岩浆作用及构造意义. 岩石学报, 27(7): 1983?1992.
[33]  纪伟强, 吴福元, 锺孙霖, 刘传周. 2009. 西藏南部冈底斯岩基花岗岩时代与岩石成因. 中国科学(D辑), 39(7): 849?871.
[34]  李长民. 2009. 锆石成因矿物学与锆石微区定年综述. 地质调查与研究, 33(3): 161?174.
[35]  李忠海. 2014. 大陆俯冲?碰撞?折返的动力学数值模拟研究综述. 中国科学(D辑), 44(5): 817?841.
[36]  莫宣学. 2011a. 岩浆与岩浆岩: 地球深部“探针”与演化记录. 自然杂志, 33 (5): 255?259.
[37]  莫宣学. 2011b. 岩浆作用与青藏高原演化. 高校地质学报, 17(3): 351?367.
[38]  莫宣学, 赵志丹, 喻学惠, 董国臣, 李佑国, 周肃, 廖忠礼. 2009. 青藏高原新生代碰撞?后碰撞火成岩. 北京: 地质出版社: 1?5.
[39]  潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521?533.
[40]  吴才来, 郜源红, 雷敏, 秦海鹏, 刘春花, 李名则, Frost B R and Wooden J L. 2014. 南阿尔金茫崖地区花岗岩类锆石SHRIMP U-Pb定年、Lu-Hf同位素特征及岩石成因. 岩石学报, 30(8): 2297?2323.
[41]  吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185?217.
[42]  徐旺春. 2010. 西藏冈底斯花岗岩类锆石U-Pb年年龄和Hf同位素组成的空间变化及其地质意义. 武汉: 中国地质大学博士学位论文: 67?78.
[43]  许志琴, 杨经绥, 李海兵, 嵇少丞, 张泽明, 刘焰. 2011. 印度?亚洲碰撞大地构造. 地质学报, 85(1): 1?33.
[44]  Anderson A T. 1976. Magma mixing: Petrological process and volcanological tool. Journal of Volcanology and Geothermal Research, 1: 3?33.
[45]  Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148: 243?258.
[46]  Boynton W V. 1984. Geochemistry of the rare earth elements: Meteorite studies // Henderson P. Rare Earth Element Geochemistry. Amsterdam: Elsevier: 63?114.
[47]  Dong G C, Mo X X, Zhao Z D, Guo T Y, Wang L L and Chen T. 2005. Geochronologic constraints by SHRIMP II zircon U-Pb dating on magma underplating in the Gangdise belt following India-Eurasia collision. Acta Geologica Sinica, 79(6): 787?794.
[48]  Hammarstrom J M and Zen E A. 1986. Aluminum in hornblende: An empirical igneous geobarometer. American Mineralogist, 71: 1297?1313.
[49]  Hollister L S, Grissoin G C, Peters E K, Stowell H H and Sisson V B. 1987. Confirmation of the empirical correlation of Al-in-hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72: 231?239.
[50]  Hoskin P W and Black L P. 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4): 423?439.
[51]  Mo X X, Zhao Z D, Zhou S, Dong G C, Guo T and Wang L. 2002. Evidence for timing of theinitiation of India-Asia collision from igneous rocks in Tibet. AGU Fall Meeting Abstract.
[52]  Patchett P J, Kouvo O, Hedge C E and Tatsumote M. 1981. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes. Contributions to Mineralogy and Petrology, 78: 279?297.
[53]  Rowley D B. 1998. Minimum age of initiation of collision between India and Asia north of the Everest based on the subsidence history of the Zhepure Mountain section. Journal of Geology, 106: 229?235.
[54]  Schmidt M W. 1992. Amphibole composition in tonalite as a function of pressure: An experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110: 304?310.
[55]  Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J and Rex D C. 1987. The closing of Tethys and the tectonics of the Himalaya. Geological Society of America Bulletin, 98(6): 678?701.
[56]  S?derlund U, Patchett P J, Jeffrey D V and Clark E I. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters, 219(3-4): 311?324.
[57]  Sun S S and McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and process // Saunders A D and Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Specail Publicaitons, 42(1): 313-345.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133