Michael H G,et al.The short QT syndrome proposed diagnostic criteria[J].Journal of the American College of Cardiology,2011,57(7):802-812.
[2]
Schimpf R,et al.Clinical and molecular genetics of the short QT syndrome[J].Current Opinion Cardiology,2008,23(3):192-198.
[3]
Harchi A,et al.Action potential clamp and chloroquine sensitivity of mutant Kir2.1 channels responsible for variant 3 short QT syndrome[J].Journal of Molecular and Cellular Cardiology,2009,47(5):743-747.
[4]
Gussak I,Brugada P,Brugada J,et al.Idiopathic short QT interval:a new clinical syndrome?[J].Cardiology,2000,94(2):99-102.
[5]
Adeniran I,et al.Proarrhythmia in KCNJ2-linked short QT syndrome:insights from modelling[J].Cardiovascular Research,2012,94(1):66-76.
[6]
Zhang H,et al.Repolarisation and vulnerability to re-entry in the human heart with short QT syndrome arising from KCNQ1 mutation-A simulation study[J].Progress in Biophysics and Molecular Biology,2008,96(1-3):112-131.
[7]
Daniel L,et al.Modelling of short QT syndrome in a heterogeneous model of the human ventricular wall[J].EP Europace,2005,7(s2):S105-S117.
[8]
K H W J ten Tusscher,et al.Organization of ventricular fibrillation in the human heart:experiments and models[J].Experimental Physiology,2009,94(5):553-562.
[9]
Wilders R.Computer modelling of the sinoatrial node[J].Medical & Biological Engineering & Computing,2007,45(2):189-207.
[10]
Natalie J,et al.Molecular architecture of the human sinus node-Insights into the function of the cardiac pacemaker[J].Circulation,2009,119:1562-1575.
[11]
Hilemann D,et al.Excitation-contraction coupling and extracellular calcium transients in rabbit atrium:reconstruction of basic cellular mechanisms[J].Proceedings of the Royal Society B,1987,230(1259):163-205.
[12]
Nygren A,et al.Mathematical model of an adult human atrial cell:the role of K+currents in repolarization[J].Circulation Research,1998,82:63-81.
[13]
Marc C,et al.Ionic mechanisms underlying human atrial action potential properties:insights from a mathematical model[J].American of Physiology Heart and Circulatory Physiology,1998,275:301-321.
[14]
Nygren A,et al.Simulations of the human atrial action potential[J].Philosophical Transactions of the Royal Society of London A,2001,359(1783):1111-1125.
[15]
Kneller J,et al.Remodeling of Ca2+-hangling by atrial tachycardia:evidence for a role in loss of rate-adaptation[J].Cardiovasclar Research,2002,54(2):416-426.
[16]
Michailova A,et al.Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum[J].Biophysical Journal,2002,83(6):3134-3151.
[17]
Beeler G,et al.Reconstruction of the action potential of ventricular myocardial fibres[J].The Journal of Physiology,1977,268:177-210.
[18]
Luo C H,Rudy Y.A model of the ventricular cardiac action potential.Depolarization,repolarization,and their interaction[J].Circulation Research,1991,68:1501-1526.
[19]
Luo C H,Rudy Y.A dynamic-model of the cardiac ventricular action-potential:Simulation of ionic currents and concentration changes[J].Circulation Research,1994,74:1071-1096.
[20]
Leo P,et al.Simulation study of cellular electrical properties in heart failure[J].Circulation Research,1998,82:1206-1223.
[21]
Vivek I,et al.A computational model of the human left-ventricular epicardial myocyte[J].Biophysical Journal,2004,87(3):1507-1525.
[22]
Li J,et al.Computer three-dimensional reconstruction of the atrioventricular node[J].Circulation Research,2008,102:975-985.
Zhu X,et al.Mathematical model of canine atrial cell[A].Proceeding of CBME 2007[C].Xi’an China:CBME,2007.20-27.
[25]
Gima K,et al.Ionic current basis of electrocardiographic waveform:a model study[J].Circulation Research,2002,90:889-896.
[26]
Rodriguez B,et al.Modeling cardiac ischemia[J].Annals of the New York Academy of Science,2006,1080:395-414.
[27]
Sanjiv M,et al.Action potential dynamics explain arrhythmic vulnerability in human heart failure[J].Journal of the American College of Cardiology,2008,52(22):1782-1792.
[28]
Tran X,et al.Vulnerability to re-entry in simulated two-dimensional cardiac tissue:effects of electrical restitution and stimulation sequence[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2007,17(4):043115/1-11.
[29]
Noble D.Modeling the heart—from genes to cells to the whole organ[J].Science,2002,295(5560):1678-1682.
[30]
Hunter P,et al.Integration from proteins to organs:the IUPS physiome project[J].Mechanisms of Ageing and Development,2005,126(1):187-192.
[31]
Keldermann R,et al.A computational study of mother rotor VF in the human ventricles[J].American Journal of Physiology Heart Circulation Physiolatory Physiology,2009,296:370-379.
[32]
Xia L,et al.Analysis of cardiac ventricular wall motion based on a three dimensional electromechanical biventricular model[J].Physics in Medicine and Biology,2005,50(8):1901-1917.
[33]
K H W J ten Tusscher,et al.Comparison of electrophysiological models for human ventricular cells and tissues[J].Progress in Biophysics and Molecular Biology,2006,90(1-3):326-345.
[34]
Brugada R,et al.Sudden death associated with short-QT syndrome linked to mutations in HERG[J].Circulation,2004,109:30-35.
[35]
Bellocq C,et al.Mutation in the KCNQ1 gene leading to the short QT-interval syndrome[J].Circulation,2004,109:2394-2397.
[36]
Hong K,et al.De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero[J].Cardiovasc Research,2005,68(3):433-440.
[37]
Silvia G,et al.A novel form of short QT syndrome(SQT3)is caused by a mutation in the KCNJ2 gene[J].Circulation Research,2005,96:800-807.
[38]
Sanjay K,et al.Atrial proarrhythmia due to increased inward rectifier current(IK1)arising from KCNJ2 mutation-A simulation study[J].Progress in Biophysics and Molecular Biology,2008,98(2-3):186-197.
[39]
Courtemanche M,et al.Ionic mechanisms underlying human atrial action potentials:insights from a mathematical model[J].American Journal of Physiology Heart and Circulatory Physiology,1998,275:301-321.
[40]
Tetsuhisa H,et al.A novel gain-of-function KCNJ2 mutation associated with short-QT syndrome impairs inward rectification of Kir2.1 currents[J].Cardiovascular Research,2012,93(4):666-673.
[41]
杨际祥,谭国真,王荣生.并行与分布式计算动态负载均衡策略综述[J].电子学报,2010,38(5):1122-1130. Yang Jixiang,Tan Guozhen,Wang Rongsheng.A survey of dynamic load balancing strategies for parallel and distributed computing[J].Acta Electronica Sinica,2010,38(5):1122-1129.(in Chinese)
[42]
杨金柱,赵大哲,栗伟,耿欢,王艳飞.基于GPU的体绘制算法研究[J].电子学报,2010,38(2A):202-206. Yang Jinzhu,zhao Dazhe,Li Wei,Geng Huan,Wang Yanfei.The research volume rendering algorithm based on GPU[J].Acta Electronica Sinica,2010,38(2A):202-206.(in Chinese)
[43]
袁友伟.采用GPU加速的三维实体模型绘制[J].电子学报,2008,36(12A):144-146. Yuan Youwei.3D solidmodels rendering based on GPU acceleration[J].Acta Electronica Sinica,2008,36(12A):144-146.(in Chinese)
[44]
Adeniran I,et al.Increased vulnerability of human ventricle to re-entrant excitation in hERG-linked variant 1 short QT syndrome[J].PloS Computational Biology,2011,7(12):1-16.
[45]
Zhang H,et al.In silico study of action potential and QT interval shortening due to loss of inactivation of the cardiac rapid delayed rectifier potassium current[J].Biochemical Biophysical Research Communications,2004,322(2):693-699.
[46]
Wang K,et al.The E1784K mutation in SCN5A and phenotypic overlap of Type 3 long QT syndrome and Brugada syndrome:A simulation study[A].Proceedings of the 36th Computers in Cardiology[C].USA:IEEE,2009,36:301-304.
[47]
Wang K,et al.Simulation ECG waveforms in long QT syndrome based on a model of human ventricular tissue[A].Proceedings of the 33rd Computers in Cardiology[C].USA:IEEE,2006,33:673-676.
[48]
Wang K,Luo C,et al.Simulation of KCNJ2-linked short QT syndrome in human ventricular tissue[A].Proceedings of the 40th Computing in Cardiology[C].USA:IEEE,2013,40:349-352.
[49]
Hodgkin A L,et al.A qantitative description of membrane current and its application to conduction and excitation in nerve[J].The Journal of Physiology,1952,117(4):500-544.
[50]
Noble D.Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations[J].Nature,1960,188:495-497.
[51]
Hunter P,et al.Bioinformatics,multiscale modeling and the IUPS physiome project[J].Briefings in Bioinformatics,2008,9(4):333-343.
[52]
Garny A,et al.Dimensionality in cardiac modeling[J].Progress in Biophysics and Molecular Biology,2005,87(1):47-66.
[53]
K H W J ten Tusscher,et al.A model for human ventricular tissue[J].American Journal of Physiology Heart Circulation Physiology,2004,286:1573-1589.
[54]
Xia L,Stuart Crozier,et al.Simulation of brugada syndrome using cellular and three-dimensional whole-heart modeling approaches[J].Physiological Measurement,2006,27(11):1125-1142.
[55]
Daniel L,et al.Modeling of cardiac ischemia in human myocytes and tissue including spatiotemporal electrophysiological variations[J].Biomedizinische Technik / Biomedical Engineering,2009,54(3):107-125.
[56]
Wussling M,et al.Simulation by two calcium store models of myocardial dynamic properties:potentiation,staircase,and biphasic tension development[J].Gen Physiol Biophys,1986,5(2):135-152.
[57]
Christian S,et al.Three-dimensional high resolution imaging of cardiac proteins to construct models of intracellular Ca2+ signalling in rat ventricular myocytes[J].Experimental Physiology,2009,94(5):496-508.
[58]
Mahajan A,et al.A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates[J].Biophysical Journal,2008,94(2):392-410.
[59]
K H W J ten Tusscher,et al.Alternans and spiral breakup in a human ventricular tissue model[J].American Journal Physiology Heart Circulation Physiology,2006,291(3):1088-1100.
[60]
Noble D.A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pace-maker potentials[J].The Journal of Physiology,1962,160:317-352.
[61]
DiFrancesco D,et al.A model of cardiac electrical activity incorporating ionic pumps and concentration changes[J].Philosophical Transactions of the Royal Society of London B,1985,307(1133):353-398.
[62]
Stewart P,et al.Mathematical models of the electrical action potential of Purkinje fibre cells[J].Philosophical Transactions of the Royal Society A,2009,367(1896):2225-2255.
[63]
Yanagihara K,et al.Reconstruction of sino-atrial node pacemaker potential based on the voltage clamp experiments[J].Japanese Journal of Physiology,1980,30(6):841-857.
[64]
Wilders R,et al.Pacemaker activity of the rabbit sinoatrial node.A comparison of mathematical models[J].Biophysical Journal,1991,60(5):1202-1216.
[65]
Demir S,et al.A mathematical model of a rabbit sinoatrial node cell[J].American Journal of Physiology-Cell Physiology,1994,266:832-852.
[66]
Zhang H,et al.Mathematical models of action potentials in the periphery and center of the rabbit sinoatrial node[J].American Journal Physiology of Physiology-Heart Circulatory Physiology,2000,279:397-421.