全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

基于无参考质量评价模型的静脉图像采集方法

DOI: 10.3969/j.issn.0372-2112.2015.02.005, PP. 236-241

Keywords: 静脉采集,质量评价,最速下降法,轮廓波分解

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于不同人的手背静脉属性间存在较大差异,因此对于不同静脉对象,在固定采集系统参数条件下很难都采集到高质量的静脉图像,这里提出了一种针对静脉特点的质量评价模型,并设计了基于评价结果的自寻优静脉图像采集方法.首先,提出了基于关键信息熵的测度函数,衡量了静脉信息的完整性;其次,提出了基于轮廓波分解的测度函数,用于评价静脉方向性信息的丰富性;再次,将两种测度函数融合,构成了客观的无参考的质量评价模型;最后,在图像自寻优过程中,提出了迭代淘汰机制,克服了最速下降法在寻优过程易陷入局部最优的缺陷.实验表明,提出的质量评价模型是可控的,且满足人眼视觉系统的视觉特性,同时,通过提出的迭代淘汰机制,降低了寻优过程的迭代次数,保证了采集系统的实时性要求.

References

[1]  殷俊,杨万扣.核稀疏保持投影及生物特征识别应用[J].电子学报,2013,41(4):639-645. Yin J,Wang W K.Kernel sparsity preserving projections and its application to biometrics[J].Acta Electronica Sinica,2013,41(4):639-645.(in Chinese)
[2]  Cross J M,Smith C L.Thermographic imaging of subcutaneous vascular network of the back of the hand for biometric identification[A].Proceedings of IEEE 29th International Carnahan Conference on Security Technology[C].England,1995.20-35.
[3]  Zhao S,Wang Y D,Wang Y H.Biometric identification based on low-quality hand vein pattern images[A].Proceedings of the 7th International Conference on Machine Learning and Cybernetics[C].ICMLC,Kunming,China.2008,1172-1177.
[4]  Zanin M,Zunino L,Rosso O A,et al.Permutation entropy and its main biomedical andeconophysics applications:a review[J].Entropy,2012,14(8):1553-1577.
[5]  Niu J,Sivakumar B.Scale-dependent synthetic streamflow generation using a continuous wavelet transform[J].Journal of Hydrology,2013,496(24):71-78.
[6]  Wang X Y,Yang H Y,Zhang Y,et al.Image denoising using SVM classification in nonsubsampled contourlet transform domain[J].Information Science,2013,246(10):155-176.
[7]  Zargari F,Mosleh A.A new content based image retrieval method using contourlet transform[J].Journal of Computer & Robotics,2010,2(1):45-51.
[8]  Doel K V D,Ascher U.The chaotic nature of faster gradient descent methods[J].Journal of Scientific Computing,2012,51(3):560-581.
[9]  Lin C L,Fan K C.Biometric verification using thermal images of palm-dorsa vein patterns[J].Transactions on Circuits and Systems for Video Technology,2004,14(2):199-213.
[10]  Crisan C,Tarnovan L G,Crisan T E.A low cost vein detection system using near infrared radiation[A].2007 IEEE Sensors Applications Symposium[C].SAS,San Diego,CA,United states,2007.51-56.
[11]  Wang J G,Yau W Y,Suwandy A,et al.Person recognition by fusing palmprint and palmvein images based on "Laplacianpalm" representation[J].Pattern Recognition,2008,41(5):1514-1527.
[12]  王云新,刘铁根,朱均超等.嵌入式人体手背静脉图像采集系统的研制[J].仪器仪表学报,2009,30(2):308-312. Wang Y X,Liu T G,Zhu J C,et al.Development of an embedded image acquisition system for human dorsal hand vein[J].Chinese Journal of Scientific Instrument,2009,30(2):308-312.(in Chinese)
[13]  Yuan X,Song Y D,Wei X Y.Parallel sub-neural network system for hand vein pattern recognition[J].Chinese Optics Letters,2011,9(5):051002.
[14]  Liu Z,Song S L.An embedded real-time finger-vein recognitionsystem for mobile devices[J].IEEE Transactions on Consumer Electronics,2012,58(2):522-527.
[15]  Zhao Y.Acquisition and preprocessing of hand vein image[A].2011 International Conference on Multimedia Technology[C].Hangzhou,China,2011.5727-5729.
[16]  苑玮琦,杨国天,李威.基于波长选择的手掌静脉采集系统研究[J].激光与红外,2011,41(2):234-239. Yuan W Q,Yang G T,Li W.Research on palm vein acquisition system based on wavelength choice[J].Laser & Infrared,2011,41(2):234-239.(in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133