全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

面向目标检测的稀疏表示方法研究进展

DOI: 10.3969/j.issn.0372-2112.2015.02.018, PP. 320-332

Keywords: 目标检测,图像处理,稀疏表示,特征

Full-Text   Cite this paper   Add to My Lib

Abstract:

目标检测作为图像理解的一个基础而重要的课题深受国内外学者的重视,在军事和民用中具有广泛应用.应用背景的多样性和复杂性使得传统目标检测算法难以克服复杂背景、噪声干扰、光照变化以及非刚体形变、遮挡、弱特征、尺度、视角和姿态变化等因素的影响.近些年来发展起来的稀疏表示方法为图像处理及目标检测研究提供了新的思路,本文概述了稀疏表示基本概念和理论研究进展,综述了稀疏表示方法在目标特征学习、目标分类器和滤波器设计以及多源信息融合目标检测等目标检测领域中的国内外重要研究进展,并展望了稀疏表示方法在目标检测领域的发展方向.

References

[1]  Vinje W E,Gallant J L.Sparse coding and decorrelation in primary visual cortex during natural vision[J].Science,2000,287(5456):1273-1276.
[2]  Nirenberg S,Carcieri S,Jacobs A,et al.Retinal ganglion cells act largely as independent encoders[J].Nature,2001,411(6838):698-701.
[3]  Serre T,Wolf L,Bileschi S,et al.Robust object recognition with cortex-like mechanisms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(3):411-426.
[4]  赵松年,姚力,金真,等.视像整体特征在人类初级视皮层上的稀疏表象:脑功能成像的证据[J].科学通报,2008,53(11):1296-1304.
[5]  杨静宇,金忠,杨健.模式特征抽取研究进展[A].2009中国自动化大会暨两化融合高峰会议[C].杭州:2009.
[6]  焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(12):1975-1981. Jiao L C,Tan S.Development and prospect of image multiscale geometric analysis[J].Acta Electronica Sinica,2003,31(12):1975-1981.(in Chinese)
[7]  Candes E J.Ridgelets:Theory and applications[D].Stanford:Stanford University,1998.
[8]  Starck J-L,Candès E J,Donoho D L.The curvelet transform for image denoising[J].IEEE Transactions on Image Processing,2002,11(6):670-684.
[9]  Mallat S G,Zhang Z.Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
[10]  Donoho D L,Elad M.Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[J].Proceedings of the National Academy of Sciences,2003,100(5):2197-2202.
[11]  Mairal J,Bach F,Ponce J,et al.Online learning for matrix factorization and sparse coding[J].The Journal of Machine Learning Research,2010,11:19-60.
[12]  Huang J,Zhang T,Metaxas D.Learning with structured sparsity[J].The Journal of Machine Learning Research,2011,12:3371-3412.
[13]  Jacob L,Obozinski G,Vert J-P.Group lasso with overlap and graph lasso[A].International Conference on Machine Learning (ICML)[C].New York,NY:ACM,2009.433-440.
[14]  Zhang Z,Rao B.Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation[J].IEEE Transaction on Signal Processing,2013,61(8):2009-2015
[15]  Qin Z,Scheinberg K,Goldfarb D.Efficient block-coordinate descent algorithms for the group lasso[J].Mathematical Programming Computation,2013,5(2):143-169.
[16]  Yuan X-T,Yan S.Visual classification with multi-task joint sparse representation[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].San Francisco,CA:IEEE Press,2010.3493-3500.
[17]  Smith L N,Elad M.Improving dictionary learning:Multiple dictionary updates and coefficient reuse[J].IEEE Signal Processing Letters,2013,20(1):79-82.
[18]  Mairal J,Bach F,Ponce J,et al.Supervised dictionary learning[A].Advances in neural information processing systems (NIPS)[C].Hyatt Regency,Vancouver:2008.1033-1040.
[19]  Mairal J,Bach F,Ponce J.Task-driven dictionary learning[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(4):791-804.
[20]  Dikmen O,Févotte C.Nonnegative dictionary learning in the exponential noise model for adaptive music signal representation[A].Advances in neural Information processing systems (NIPS)[C].Lake Tahoe,NV:2012.2267-2275.
[21]  林杰,石光明,董伟生.基于信息自由度采样的信号重构方法研究进展[J].电子学报,2012,40(8):1640-1649. LIN J,SHI G M,DONG W S.Research Advances in Reconstruction Methods Based on Information Degree-of-Freedom Sampling[J].Acta Electronica Sinica,2012,40(8):1640-1649.(in Chinese)
[22]  Oreifej O,Li X,Shah M.Simultaneous video stabilization and moving object detection in turbulence[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(2):450-462.
[23]  Lang C,Liu G,Yu J,et al.Saliency detection by multitask sparsity pursuit[J].IEEE Transactions on Image Processing,2012,21(3):1327-1338.
[24]  Shen X,Wu Y.A unified approach to salient object detection via low rank matrix recovery[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Providence,RI:IEEE Press,2012.853-860.
[25]  Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
[26]  Avila S,Thome N,Cord M,et al.Pooling in image representation:The visual codeword point of view[J].Computer Vision and Image Understanding,2013,117(5):453-465.
[27]  Koniusz P,Yan F,Mikolajczyk K.Comparison of mid-level feature coding approaches and pooling strategies in visual concept detection[J].Computer Vision and Image Understanding,2013,117(5):479-492.
[28]  Leung T,Malik J.Representing and recognizing the visual appearance of materials using three-dimensional textons[J].International Journal of Computer Vision,2001,43(1):29-44.
[29]  Van Gemert J C,Veenman C J,Smeulders A W,et al.Visual word ambiguity[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(7):1271-1283.
[30]  Yang J,Yu K,Gong Y,et al.Linear spatial pyramid matching using sparse coding for image classification[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Miami,FL:IEEE Press,2009.1794-1801.
[31]  Boureau Y-L,Ponce J,Lecun Y.A theoretical analysis of feature pooling in visual recognition[A].International Conference on Machine Learning (ICML)[C].Haifa,Israel:Omnipress,2010.111-118.
[32]  Yang J,Yu K,Huang T.Supervised translation-invariant sparse coding[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].San Francisco,CA:2010.3517-3524.
[33]  Boureau Y-L,Bach F,Lecun Y,et al.Learning mid-level features for recognition[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].San Francisco,CA:2010.2559-2566.
[34]  Wang J,Yang J,Yu K,et al.Locality-constrained linear coding for image classification[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].San Francisco,CA:2010.3360-3367.
[35]  Lei H,Mei K,Zheng N,et al.Learning group-based dictionaries for discriminative image representation[J].Pattern Recognition,2014,47(2):899-913.
[36]  Naikal N,Yang A Y,Sastry S S.Informative feature selection for object recognition via sparse PCA[A].IEEE International Conference on Computer Vision (ICCV)[C].Barcelona:IEEE Press,2011.818-825.
[37]  Rigamonti R,Brown M A,Lepetit V.Are sparse representations really relevant for image classification?[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Providence,RI:IEEE Press,2011.1545-1552.
[38]  Rigamonti R,Sironi A,Lepetit V,et al.Learning separable filters[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Portland,OR:IEEE Press,2013:2754-2761.
[39]  Kavukcuoglu K,Sermanet P,Boureau Y-L,et al.Learning convolutional feature hierarchies for visual recognition[A].Advances in neural information processing systems (NIPS)[C].Vancouver,BC:2010.1090-1098.
[40]  余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. YU K,JIA L,CHEN Y Q,et al.Deep Learning:Yesterday,Today,and Tomorrowp[J].Journal of Computer Research and Development,2013,50(9):1799-1804.(in Chinese)
[41]  Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507.
[42]  Bengio Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127.
[43]  Hinton G E,Osindero S,Teh Y-W.A fast learning algorithm for deep belief nets[J].Neural Computation,2006,18(7):1527-1554.
[44]  Jarrett K,Kavukcuoglu K,Ranzato M A,et al.What is the best multi-stage architecture for object recognition?[A].International Conference on Computer Vision (ICCV)[C].Kyoto:IEEE Press,2009.2146-2153.
[45]  Sermanet P,Kavukcuoglu K,Chintala S,et al.Pedestrian detection with unsupervised multi-stage feature learning[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Portland,OR:IEEE Press,2013.3626-3633.
[46]  Zeiler M D,Krishnan D,Taylor G W,et al.Deconvolutional networks[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].San Francisco,CA:IEEE Press,2010.2528-2535.
[47]  张长水.机器学习面临的挑战[J].中国科学:信息科学,2013,43(12):1612-1623. ZHANG C.Challenges in machine learning[J].SCIENCE CHINA Information Sciences,2013,43(12):1612-1623.(in Chinese)
[48]  潘泓,金立左,夏思宇,等.基于多层次互补特征的通用目标检测模型[J].电子与信息学报,2012,34(7):1531-1537. PAN H,JIN L Z,XIA S Y,et al.A hierarchical and complementary feature-based model for genetic object detection[J].Journal of Electronics & Information Technology,2012,34(7):1531-1537.(in Chinese)
[49]  Felzenszwalb P F,Girshick R B,Mcallester D,et al.Object detection with discriminatively trained part-based models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(9):1627-1645.
[50]  Candes E J,Tao T.Decoding by linear programming[J].IEEE Transactions on Information Theory,2005,51(12):4203-4215.
[51]  Olshausen B A,Field D J.Sparse coding with an overcomplete basis set:A strategy employed by VI?[J].Vision Research,1997,37(23):3311-3326.
[52]  Pati Y C,Rezaiifar R,Krishnaprasad P.Orthogonal matching pursuit:Recursive function approximation with applications to wavelet decomposition[A].Asilomar Conference on Signals,Systems and Computers[C].Pacific Grove,CA:IEEE Press,1993.40-44.
[53]  Lee H,Battle A,Raina R,et al.Efficient sparse coding algorithms[A].Advances in neural information processing systems (NIPS)[C].MIT Press,2007.801-808.
[54]  Aharon M,Elad M,Bruckstein A.The K-SVD:An algorithm for designing of overcomplete dictionaries for sparse representation[J].IEEE Transactions on Signal Processing,2006,54(11):4311-4322.
[55]  Zhang H,Nasrabadi N M,Zhang Y,et al.Multi-observation visual recognition via joint dynamic sparse representation[A].IEEE International Conference on Computer Vision (ICCV)[C].Barcelona:IEEE Press,2011.595-602.
[56]  Nguyen N H,Nasrabadi N M,Tran T D.Robust multi-sensor classification via joint sparse representation[A].International Conference on Information Fusion[C].Chicago,IL:IEEE Press,2011.1-8.
[57]  Szabó Z,Póczos B,Lorincz A.Online group-structured dictionary learning[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Providence,RI:IEEE Press,2011.2865-2872.
[58]  Mairal J,Bach F,Ponce J,et al.Discriminative learned dictionaries for local image analysis[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Anchorage,AK:IEEE Press,2008.1-8.
[59]  Candès E J,Recht B.Exact matrix completion via convex optimization[J].Foundations of Computational mathematics,2009,9(6):717-772.
[60]  Cai J-F,Candès E J,Shen Z.A singular value thresholding algorithm for matrix completion[J].SIAM Journal on Optimization,2010,20(4):1956-1982.
[61]  Lin Z,Chen M,Ma Y.The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[A/OL].http://arxiv.org/abs/1009.5055,2010-09-26.
[62]  Liu J,Musialski P,Wonka P,et al.Tensor completion for estimating missing values in visual data[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(1):208-220.
[63]  Cabral R S,De La Torre F,Costeira J P,et al.Matrix completion for multi-label image classification[A].Advances in neural information processing systems (NIPS)[C].Sierra Nevada,Spain:2011.190-198.
[64]  Wright J,Ganesh A,Rao S,et al.Robust principal component analysis:Exact recovery of corrupted low-rank matrices via convex optimization[A].Advances in neural information processing systems (NIPS)[C].Whistler,BC:2009.2080-2088.
[65]  Candès E J,Li X,Ma Y,et al.Robust principal component analysis?[J].Journal of the ACM,2011,58(3):11.
[66]  Peng Y,Ganesh A,Wright J,et al.RASL:Robust alignment by sparse and low-rank decomposition for linearly correlated images[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2233-2246.
[67]  Wang X,Wan W,Liu G.Multi-task low-rank and sparse matrix recovery for human motion segmentation[A].IEEE International Conference on Image Processing (ICIP)[C].Orlando,FL: IEEE Press,2012.897-900.
[68]  Zhou X,Yang C,Yu W.Moving object detection by detecting contiguous outliers in the low-rank representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(3):597-610.
[69]  Ren X,Ramanan D.Histograms of sparse codes for object detection[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Portland,OR:IEEE Press,2013.3246-3253.
[70]  Ngiam J,Koh P W,Chen Z,et al.Sparse Filtering[A].Advances in Neural Information Processing Systems (NIPS)[C].Sierra Nevada,Spain:2011.1125-1133.
[71]  Wright J,Yang A Y,Ganesh A,et al.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):210-227.
[72]  Wagner A,Wright J,Ganesh A,et al.Toward a practical face recognition system:Robust alignment and illumination by sparse representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(2):372-386.
[73]  Yang M,Zhang L,Zhang D.Efficient misalignment-robust representation for real-time face recognition[A].European Conference on Computer Vision (ECCV)[C].Florence,Italy:Springer Berlin Heidelberg,2012.850-863.
[74]  He R,Zheng W-S,Hu B-G.Maximum correntropy criterion for robust face recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2011,33(8):1561-1576.
[75]  Yang M,Zhang L,Feng X,et al.Fisher discrimination dictionary learning for sparse representation[A].IEEE International Conference on Computer Vision (ICCV)[C].Barcelona:IEEE Press,2011.543-550.
[76]  Yuan X,Liu X,Yan S.Visual Classification With Multitask Joint Sparse Representation[J].IEEE Transactions on Image Processing,2012,21(10):4349-4360.
[77]  Girshick R B,Felzenszwalb P F,Mcallester D.Object detection with grammar models[A].Advances in neural Information processing systems (NIPS)[C].Sierra Nevada,Spain:2011.442-450.
[78]  Song H O,Zickler S,Althoff T,et al.Sparselet models for efficient multiclass object detection[A].European Conference on Computer Vision (ECCV)[C].Florence,Italy:Springer Berlin Heidelberg,2012.802-815.
[79]  Song H O,Darrell T,Girshick R B.Discriminatively activated sparselets[A].International Conference on Machine Learning (ICML)[C].Atlanta,GA:2013:196-204.
[80]  Guo X,Liu D,Jou B,et al.Robust Object Co-detection[A].IEEE Conference on Computer Vision and Pattern Recognition (CVPR)[C].Portland,OR:IEEE Press,2013.3206-3213.
[81]  Zivkovic Z.Improved adaptive Gaussian mixture model for background subtraction[A].International Conference on Pattern Recognition (ICPR)[C].Cambridge,UK:IEEE Press,2004.28-31.
[82]  Li Y,Yan J,Zhou Y,et al.Optimum subspace learning and error correction for tensors[A].European Conference on Computer Vision (ECCV)[C].Crete,Greece:Springer Berlin Heidelberg,2010.790-803.
[83]  Shekhar S,Patel V,Nasrabadi N,et al.Joint sparse representation for robust multimodal biometrics recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(1):113-126.
[84]  Davis J W,Sharma V.Background-subtraction using contour-based fusion of thermal and visible imagery[J].Computer Vision and Image Understanding,2007,106(2):162-182.
[85]  Gao S,Cheng Y,Zhao Y.Method of visual and infrared fusion for moving object detection[J].Optics Letters,2013,38(11):1981-1983.
[86]  Chen Y,Nasrabadi N M,Tran T D.Sparse representation for target detection in hyperspectral imagery[J].IEEE Journal of Selected Topics in Signal Processing,2011,5(3):629-640.
[87]  Chen Y,Nasrabadi N M,Tran T D.Simultaneous joint sparsity model for target detection in hyperspectral imagery[J].IEEE Geoscience and Remote Sensing Letters,2011,8(4):676-680.
[88]  Chen Y,Nasrabadi N M,Tran T D.Kernel sparse representation for hyperspectral target detection[A].IEEE International Geoscience and Remote Sensing Symposium (IGARSS)[C].Munich:IEEE Press,2012.7484-7487.
[89]  Huang Z,Shi Z,Qin Z.Convex relaxation based sparse algorithm for hyperspectral target detection[J].Optik-International Journal for Light and Electron Optics,2013,124(24):6594-6598.
[90]  Zhang H,Nasrabadi N M,Huang T S,et al.Joint sparse representation based automatic target recognition in SAR images[A].Proc.of SPIE[C].Orlando,FL:SPIE Press,2011.805112-1.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133