全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
电子学报  2015 

一种新的面向普通用户的多值属性关联规则可视化挖掘方法

DOI: 10.3969/j.issn.0372-2112.2015.02.021, PP. 344-352

Keywords: 多值属性,概念格,关联规则,可视化挖掘

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对传统关联规则可视化挖掘方法不利于处理多值属性数据、缺乏展现数据间的频繁模式和关联模式以及效率低下等问题,提出了基于KAF因子和CHF因子的Apriori改进算法进行多值属性关联规则挖掘,实现了一种新的基于概念格的多值属性关联规则可视化方法.运用概念格理论对多值属性数据进行了重新定义和分类,建立了较为完整的挖掘过程参数调整策略,方便用户选择关键属性值进行规则挖掘分析,提高了算法运行速度和挖掘效率.以概念格结构将多值数据组织起来,实现了对频繁项集的可视化展示,以及关联规则的多模式可视化展示.实验结果表明,改进后的挖掘算法具有更好的性能,所提出的可视化形式和已有成果相比具有良好的展现效果.

References

[1]  Wang D X,Xie Q.Analysis of association rule mining on quantitative concept lattice[A].Artificial Intelligence and Computational Intelligence,LNCS7530 [C].Berlin:Springer-Verlag,2012.142-149.
[2]  BayVo,Bac Le.Interestingness measures for association rules:combination between lattice and hash tables [J].Expert Systems with Applications,2011,38(9):11630-11640.
[3]  Li D C,Zhang M.A new approach of self-adaptive discretization to enhance the Apriori quantitative association rule mining[A].Proceedings of the 2012 Second International Conference on Intelligent System Design and Engineering Application[C].Washington,DC:IEEE Computer Society,2012.44-47.
[4]  刘波,潘久辉.基于频繁模式图的多维关联规则挖掘算法研究[J].电子学报,2007,35(8):1612-1616. Liu Bo,Pan Jiu-hui.Research of algorithms based on a frequent pattern graph for mining multidimensional association rules [J].Acta Electronica Sinica,2007,35(8):1612-1616.(in Chinese)
[5]  Bal M,Bal Y,Ustundag A.Knowledge representation and discovery using formal concept analysis:an HRM application[A].Proceedings of the World Congress on Engineering[C].London:Newswood,2011.1068-1073.
[6]  Cassio M,Legrand B.Extracting and visualising tree-like structures from concept lattices[A].Proceedings of the 2011 15th International Conference on Information Visualisation[C].Washington,DC:IEEE Computer Society,2011.261-266.
[7]  Julien B,Fabrice G,Henri B.Interactive visual exploration of association rules with rule-focusing methodology [J].Knowledge and Information Systems,2007,13(1):43-75.
[8]  Michael H,Chelluboina S.Visualizing association rules in hierarchical groups[A].Interface 2011:Statistical,Machine Learning,and Visualization Algorithms [C].North Carolina:SAS Institute,2011.1-11.
[9]  Dario B,Cristine D.Visual mining of association rules[A].Visual Data Mining:Theory,Techniques and Tools for Visual Analytics,LNAI 6208 [C].Berlin:Springer-Verlag,2008.103-122.
[10]  Alatas B,Akin E,Karci A.MODENAR:multi-objective differential evolution algorithm for mining numeric association rules [J].Applied Soft Computing,2008,8(1):646-656.
[11]  Pachón lvarez V,Mata Vázquez J.An evolutionary algorithm to discover quantitative association rules from huge databases without the need for an a priori discretization [J].Export Systems with Applications,2012,39(1):585-593.
[12]  Martínez-Ballesteros M,Riquelme J.Analysis of measures of quantitative association rules[A].Proceedings of the 6th international conference on Hybrid artificial intelligent systems[C].Berlin:Springer Verlag,2011.6679.319-326.
[13]  耿生玲,李永明,刘震.关联规则挖掘的软集包含度方法[J].电子学报,2013,41(4):804-809. GENG Sheng-ling,LI Yong-ming,LIU Zhen.An Approach to Association Rules Mining Using Inclusion Degree of Soft Sets[J].Acta Electronica Sinica,2013,41(4):804-809.(in Chinese)
[14]  Martinez-Ballesteros M,Riquelme J.Analysis of measures of quantitative association rules[A].Proceedings of the 6th International Conference on Hybrid Artificial Intelligent Systems[C].Berlin:Springer-Verlag,2011.319-326.
[15]  Ganter B,Wille R.Formal Concept Analysis:Mathematical Foundations [M].Berlin:Springer Verlag,1999.17-35.
[16]  Nguyen TT,Hui SC,Chang K.A lattice-based approach for mathematical search using formal concept analysis [J].Expert Systems with Applications,2012,39(5):5820-5828.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133