The harvesting of electrical energy generated from the flutter phenomenon of a plate wing is studied using the quasi-steady aerodynamic theory and the finite element method. The example of supersonic flutter structure comes from sounding rockets’ wings. Electrical energy is harvested from supersonic flutter by using piezoelectric patches and switching devices. In order to evaluate the harvesting performance, we simulate flutter dynamics of the plate wing to which piezoelectric patches are attached. We demonstrate that our harvesting system can generate much more electrical energy from wing flutter than conventional harvesting systems can. This flutter utilization changes our perception to a useful one in various fruitful applications from a destructive phenomenon. 1. Introduction Flutter is caused by the interaction between the structural motion of a wing and the aerodynamic load exerted on the wing. It is a typical self-excited aeroelastic phenomenon that occurs in wings, thin walls, and so on. Dowell [1] occurs most frequently within a high-speed, that is, transonic, supersonic, and hypersonic flow. Lottati [2] investigated the effects of structural and aerodynamic damping on the speed of flutter of a composite plate wing. Tang and Dowell [3] have analyzed the nonlinear behavior of a flexible rotor blade due to structural free-play and aerodynamic stall nonlinearities. The analytical results were compared with experimental observations. Various studies have been conducted on flutter dynamics, such as prediction of flutter and robust structural optimization of wings [4]. The use of sophisticated smart materials such as piezoelectric materials, shape memory alloys, and magnetostrictive materials in aerospace engineering can lead to the development of new design concepts. A new design concept is to alter structural dynamics by exertion of force or deformation. Moon and Hwang [5] used the linear quadratic regulator theory to suppress nonlinear panel flutter. Han et al. [6] designed a mu-synthesis controller to enhance flutter suppression performance despite parametric uncertainties. Raja et al. [7] used multilayer piezoelectric actuators and piezoelectric sensors for constructing a linear quadratic Gaussian controller to suppress the flutter of a composite plate. Agneni et al. [8] applied this passive method to flutter suppression and demonstrated satisfactory suppression performance. However, flutter suppression performance achieved by adopting this passive method is poorer when the electrical resonance frequency is slightly different from the frequency
References
[1]
E. H. Dowell, “Nonlinear oscillations of a fluttering plate,” AIAA Journal, vol. 4, no. 7, pp. 1267–1275, 1966.
[2]
I. Lottati, “The role of structural and aerodynamic damping on the aeroelastic behavior of wings,” Journal of Aircraft, vol. 23, no. 7, pp. 606–608, 1986.
[3]
D. M. Tang and E. H. Dowell, “Experimental and theoretical study for nonlinear aeroelastic behavior of a flexible rotor blade,” AIAA Journal, vol. 31, no. 6, pp. 1133–1142, 1993.
[4]
Y. Odaka and H. Furuya, “Robust structural optimization of plate wing corresponding to bifurcation in higher mode flutter,” Structural and Multidisciplinary Optimization, vol. 30, no. 6, pp. 437–446, 2005.
[5]
S. H. Moon and J. S. Hwang, “Panel flutter suppression with an optimal controller based on the nonlinear model using piezoelectric materials,” Composite Structures, vol. 68, no. 3, pp. 371–379, 2005.
[6]
J. H. Han, J. Tani, and J. Qiu, “Active flutter suppression of a lifting surface using piezoelectric actuation and modern control theory,” Journal of Sound and Vibration, vol. 291, no. 3–5, pp. 706–722, 2006.
[7]
S. Raja, A. A. Pashilkar, R. Sreedeep, and J. V. Kamesh, “Flutter control of a composite plate with piezoelectric multilayered actuators,” Aerospace Science and Technology, vol. 10, no. 5, pp. 435–441, 2006.
[8]
A. Agneni, F. Mastroddi, and G. M. Polli, “Shunted piezoelectric patches in elastic and aeroelastic vibrations,” Computers and Structures, vol. 81, no. 2, pp. 91–105, 2003.
[9]
S. Beeby and N. White, Energy Harvesting for Autonomous Systems (Smart Materials, Structures, and Systems), Artech House, 2010.
[10]
T. J. Kazmierski and S. Beeby, Energy Harvesting Systems: Principles, Modeling and Applications, Springer, 2010.
[11]
P. J. Cornwell, J. Goethal, J. Kowko, and M. Damianakis, “Enhancing power harvesting using a tuned auxiliary structure,” Journal of Intelligent Material Systems and Structures, vol. 16, no. 10, pp. 825–834, 2005.
[12]
W. P. Robbins, D. Morris, I. Marusic, and T. O. Novak, “Wind-generated electrical energy using flexible piezoelectric materials,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE '06), November 2006.
[13]
S. D. Kwon, “A T-shaped piezoelectric cantilever for fluid energy harvesting,” Applied Physics Letters, vol. 97, no. 16, Article ID 164102, 2010.
[14]
K. Isogai, M. Yamasaki, and T. Asaoka, “Application of CFD to design study of flutter-power-generation,” Special Publication of National Aerospace Laboratory, vol. 57, pp. 106–111, 2003 (Japanese).
[15]
M. Bryant and E. Garcia, “Modeling and testing of a novel aeroelastic flutter energy harvester,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 133, no. 1, Article ID 011010, 2011.
[16]
C. De Marqui, A. Erturk, and D. J. Inman, “Piezoaeroelastic modeling and analysis of a generator wing with continuous and segmented electrodes,” Journal of Intelligent Material Systems and Structures, vol. 21, no. 10, pp. 983–993, 2010.
[17]
C. De Marqui Jr., W. G. R. Vieira, A. Erturk, and D. J. Inman, “Modeling and analysis of piezoelectric energy harvesting from aeroelastic vibrations using the doublet-lattice method,” Journal of Vibration and Acoustics, Transactions of the ASME, vol. 133, no. 1, Article ID 011003, 2011.
[18]
J. A. Dunnmon, S. C. Stanton, B. P. Mann, and E. H. Dowell, “Power extraction from aeroelastic limit cycle oscillations,” Journal of Fluids and Structures, vol. 27, no. 8, pp. 1182–1198, 2011.
[19]
V. C. Sousa, M. De Anicezio, C. De. Marqui, and A. Erturk, “Enhanced aeroelastic energy harvesting by exploiting combined nonlinearities: theory and experiment,” Smart Materials and Structures, vol. 20, no. 9, article 094007, 2011.
[20]
A. Erturk, W. G. R. Vieira, C. De Marqui, and D. J. Inman, “On the energy harvesting potential of piezoaeroelastic systems,” Applied Physics Letters, vol. 96, no. 18, Article ID 184103, 2010.
[21]
National Research Council Board, Sounding Rockets; Their Role in Space Research, General Books LLC, National Academy of Sciences, 2009.
[22]
H. Ashley and G. Zartarian, “Piston theory—a new aerodynamic tool for the aeroelastician,” Journal of the Aeronautical Sciences, vol. 23, pp. 1109–1118, 1956.
[23]
B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, UK, 1971.
[24]
O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method, Mcgraw-Hill, Berkshire, UK, 1985.
[25]
J. Onoda, K. Makihara, and K. Minesugi, “Energy-recycling semi-active method for vibration suppression with piezoelectric transducers,” AIAA Journal, vol. 41, no. 4, pp. 711–719, 2003.
[26]
M. J. Balas, “Direct velocity feedback control of large space structures,” Journal of Guidance, Control, and Dynamics, vol. 2, no. 3, pp. 252–253, 1979.
[27]
J. E. Cooper and T. T. Noll, “Technical evaluation report on the 1995 specialists’ meeting on advanced aeroservoelastic testing and data analysis,” in Proceedings of the Conference Proceedings CP-566 (AGARD '95), 1995.
[28]
M. J. Patil, D. H. Hodges, and C. E. S. Cesnik, “Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft,” in Proceedings of the 40th Structures, Structural Dynamics and Materials Conference, AIAA-1999-1470, Saint Louis, Mo, USA, 1999.
[29]
J. P. Mayuresh, H. H. Dewey, and E. S. C. Carlos, “Limit cycle oscillations of a complete aircraft,” in Proceedings of the 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA-2000-1395, Atlanta, Ga, USA, 2000.