Translation initiation is a critical early step in the replication cycle of the positive-sense, single-stranded RNA genome of noroviruses, a major cause of gastroenteritis in humans. Norovirus RNA, which has neither a 5′ m7G cap nor an internal ribosome entry site (IRES), adopts an unusual mechanism to initiate protein synthesis that relies on interactions between the VPg protein covalently attached to the 5′-end of the viral RNA and eukaryotic initiation factors (eIFs) in the host cell. For murine norovirus (MNV) we previously showed that VPg binds to the middle fragment of eIF4G (4GM; residues 652–1132). Here we have used pull-down assays, fluorescence anisotropy, and isothermal titration calorimetry (ITC) to demonstrate that a stretch of ~20 amino acids at the C terminus of MNV VPg mediates direct and specific binding to the HEAT-1 domain within the 4GM fragment of eIF4G. Our analysis further reveals that the MNV C terminus binds to eIF4G HEAT-1 via a motif that is conserved in all known noroviruses. Fine mutagenic mapping suggests that the MNV VPg C terminus may interact with eIF4G in a helical conformation. NMR spectroscopy was used to define the VPg binding site on eIF4G HEAT-1, which was confirmed by mutagenesis and binding assays. We have found that this site is non-overlapping with the binding site for eIF4A on eIF4G HEAT-1 by demonstrating that norovirus VPg can form ternary VPg-eIF4G-eIF4A complexes. The functional significance of the VPg-eIF4G interaction was shown by the ability of fusion proteins containing the C-terminal peptide of MNV VPg to inhibit in vitro translation of norovirus RNA but not cap- or IRES-dependent translation. These observations define important structural details of a functional interaction between norovirus VPg and eIF4G and reveal a binding interface that might be exploited as a target for antiviral therapy.
References
[1]
Patel MM, Widdowson MA, Glass RI, Akazawa K, Vinje J, Parashar UD. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerging Infect Dis. 2008;14(8):1224–31. doi: 10.3201/eid1408.071114. pmid:18680645
[2]
Ahmed SM, Hall AJ, Robinson AE, Verhoef L, Premkumar P, Parashar UD, et al. Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis. Lancet Infect Dis. 2014;14(8):725–30. doi: 10.1016/S1473-3099(14)70767-4. pmid:24981041
[3]
Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR, Grau KR, et al. Enteric bacteria promote human and mouse norovirus infection of B cells. Science. 2014;346(6210):755–9. doi: 10.1126/science.1257147. pmid:25378626
[4]
Mesquita JR, Barclay L, Nascimento MSJ, Vinje J. Novel Norovirus in Dogs with Diarrhea. Emerg Infect Dis. 2010;16(6):980–2. doi: 10.3201/eid1606.091861. pmid:20507751
[5]
Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW. STAT1-dependent innate immunity to a Norwalk-like virus. Science. 2003;299(5612):1575–8. doi: 10.1126/science.1077905. pmid:12624267
[6]
Siebenga JJ, Duizer E, Koopmans M.P.G. Norovirus Epidemiology. In: Hansman GS, Jiang J.X., Green K.Y., editor. Caliciviruses: Molecular and Cellular Virology: Caister Academic Press; 2010. p. 1–24.
[7]
Walsh D, Mathews MB, Mohr I. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harb Perspect Biol. 2013;5(1):a012351. doi: 10.1101/cshperspect.a012351. pmid:23209131
[8]
Hinnebusch AG, Lorsch JR. The mechanism of eukaryotic translation initiation: new insights and challenges. Cold Spring Harb Perspect Biol. 2012;4(10):a011544. doi: 10.1101/cshperspect.a011544. pmid:22815232
[9]
Jackson RJ, Hellen CU, Pestova TV. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol. 2010;11(2):113–27. doi: 10.1038/nrm2838. pmid:20094052
[10]
Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, et al. A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol. 1998;18(1):334–42. doi: 10.1128/MCB.18.1.334. pmid:9418880
[11]
Coldwell MJ, Sack U, Cowan JL, Barrett RM, Vlasak M, Sivakumaran K, et al. Multiple isoforms of the translation initiation factor eIF4GII are generated via use of alternative promoters, splice sites and a non-canonical initiation codon. Biochem J. 2012;448(1):1–11. doi: 10.1042/BJ20111765. pmid:22909319
[12]
Imataka H, Olsen HS, Sonenberg N. A new translational regulator with homology to eukaryotic translation initiation factor 4G. EMBO J. 1997;16(4):817–25. doi: 10.1093/emboj/16.4.817. pmid:9049310
[13]
Jackson RJ. Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans. 2005;33(Pt 6):1231–41. doi: 10.1042/BST20051231. pmid:16246087
[14]
Etchison D, Milburn SC, Edery I, Sonenberg N, Hershey JW. Inhibition of HeLa cell protein synthesis following poliovirus infection correlates with the proteolysis of a 220,000-dalton polypeptide associated with eucaryotic initiation factor 3 and a cap binding protein complex. J Biol Chem. 1982;257(24):14806–10. pmid:6294080
[15]
Gradi A, Svitkin YV, Imataka H, Sonenberg N. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S A. 1998;95(19):11089–94. doi: 10.1073/pnas.95.19.11089. pmid:9736694
[16]
Kirchweger R, Ziegler E, Lamphear BJ, Waters D, Liebig HD, Sommergruber W, et al. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol. 1994;68(9):5677–84. pmid:8057448
Haghighat A, Svitkin Y, Novoa I, Kuechler E, Skern T, Sonenberg N. The eIF4G-eIF4E complex is the target for direct cleavage by the rhinovirus 2A proteinase. J Virol. 1996;70(12):8444–50. pmid:8970966
[19]
Foeger N, Glaser W, Skern T. Recognition of eukaryotic initiation factor 4G isoforms by picornaviral proteinases. J Biol Chem. 2002;277(46):44300–9. doi: 10.1074/jbc.M208006200. pmid:12228254
[20]
Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, et al. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res. 2015;43(7):3764–75. doi: 10.1093/nar/gkv205. pmid:25779044
[21]
Hansman GS, Jiang XJ, Green KY. Caliciviruses: molecular and cellular virology. Norfolk, UK: Caister Academic Press; 2010.
[22]
Virgen-Slane R, Rozovics JM, Fitzgerald KD, Ngo T, Chou W, van der Heden van Noort GJ, et al. An RNA virus hijacks an incognito function of a DNA repair enzyme. Proc Natl Acad Sci U S A. 2012;109(36):14634–9. doi: 10.1073/pnas.1208096109. pmid:22908287
[23]
Lee YF, Nomoto A, Detjen BM, Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A. 1977;74(1):59–63. pmid:189316 doi: 10.1073/pnas.74.1.59
[24]
Nomoto A, Kitamura N, Golini F, Wimmer E. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc Natl Acad Sci U S A. 1977;74(12):5345–9. pmid:202952 doi: 10.1073/pnas.74.12.5345
[25]
Chaudhry Y, Nayak A, Bordeleau ME, Tanaka J, Pelletier J, Belsham GJ, et al. Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem. 2006;281(35):25315–25. doi: 10.1074/jbc.M602230200. pmid:16835235
[26]
Herbert TP, Brierley I, Brown TD. Identification of a protein linked to the genomic and subgenomic mRNAs of feline calicivirus and its role in translation. J Gen Virol. 1997;78 (Pt 5):1033–40. pmid:9152420 doi: 10.1099/0022-1317-78-5-1033
[27]
Burroughs JN, Brown F. Presence of a covalently linked protein on calicivirus RNA. J Gen Virol. 1978;41(2):443–6. pmid:569187 doi: 10.1099/0022-1317-41-2-443
[28]
Guix S, Asanaka M, Katayama K, Crawford SE, Neill FH, Atmar RL, et al. Norwalk virus RNA is infectious in mammalian cells. J Virol. 2007;81(22):12238–48. doi: 10.1128/JVI.01489-07. pmid:17855551
[29]
Sosnovtsev S, Green KY. RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VPg for infectivity. Virology. 1995;210(2):383–90. doi: 10.1006/viro.1995.1354. pmid:7618275
[30]
Schein CH, Oezguen N, Volk DE, Garimella R, Paul A, Braun W. NMR structure of the viral peptide linked to the genome (VPg) of poliovirus. Peptides. 2006;27(7):1676–84. doi: 10.1016/j.peptides.2006.01.018. pmid:16540201
[31]
Hwang HJ, Min HJ, Yun H, Pelton JG, Wemmer DE, Cho KO, et al. Solution structure of the porcine sapovirus VPg core reveals a stable three-helical bundle with a conserved surface patch. Biochem Biophys Res Commun. 2015;459(4):610–6. doi: 10.1016/j.bbrc.2015.02.156. pmid:25753201
[32]
Leen EN, Kwok KYR, Birtley JR, Simpson PJ, Subba-Reddy CV, Chaudhry Y, et al. Structures of the Compact Helical Core Domains of Feline Calicivirus and Murine Norovirus VPg Proteins. J Virol. 2013;87(10):5318–30. doi: 10.1128/Jvi.03151-12. pmid:23487472
[33]
Daughenbaugh KF, Fraser CS, Hershey JWB, Hardy ME. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO Journal. 2003;22(11):2852–9. doi: 10.1093/Emboj/Cdg251. pmid:12773399
[34]
Daughenbaugh KF, Wobus CE, Hardy ME. VPg of murine norovirus binds translation initiation factors in infected cells. Virol J. 2006;3:33. doi: 10.1186/1743-422X-3-33. pmid:16719923
[35]
Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A, Labrie L, et al. Calicivirus translation initiation requires an interaction between VPg and eIF 4 E. EMBO Rep. 2005;6(10):968–72. doi: 10.1038/sj.embor.7400510. pmid:16142217
[36]
Hosmillo M, Chaudhry Y, Kim DS, Goodfellow I, Cho KO. Sapovirus Translation Requires an Interaction Between VPg and the Cap Binding Protein eIF4E. J Virol. 2014;88(21):12212–21. doi: 10.1128/JVI.01650-14.
[37]
Royall E, Doyle N, Abdul-Wahab A, Emmott E, Morley SJ, Goodfellow I, et al. Murine Norovirus 1 (MNV1) Replication Induces Translational Control of the Host by Regulating eIF4E Activity during Infection. J Biol Chem. 2015;290(8):4748–58. doi: 10.1074/jbc.M114.602649. pmid:25561727
[38]
Chung L, Bailey D, Leen EN, Emmott EP, Chaudhry Y, Roberts LO, et al. Norovirus Translation Requires an Interaction between the C Terminus of the Genome-linked Viral Protein VPg and Eukaryotic Translation Initiation Factor 4G. J Biol Chem. 2014;289(31):21738–50. doi: 10.1074/jbc.M114.550657. pmid:24928504
[39]
Marcotrigiano J, Lomakin IB, Sonenberg N, Pestova TV, Hellen CU, Burley SK. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol Cell. 2001;7(1):193–203. pmid:11172724 doi: 10.1016/s1097-2765(01)00167-8
[40]
Leen EN, Baeza G, Curry S. Structure of a murine norovirus NS6 protease-product complex revealed by adventitious crystallisation. PLoS One. 2012;7(6):e38723. doi: 10.1371/journal.pone.0038723. pmid:22685603
[41]
Muhaxhiri Z, Deng L, Shanker S, Sankaran B, Estes MK, Palzkill T, et al. Structural basis of substrate specificity and protease inhibition in Norwalk virus. J Virol. 2013;87(8):4281–92. doi: 10.1128/JVI.02869-12. pmid:23365454
[42]
Virgili G, Frank F, Feoktistova K, Sawicki M, Sonenberg N, Fraser CS, et al. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure. 2013;21(4):517–27. doi: 10.1016/j.str.2013.01.015. pmid:23478064
[43]
Lee SH, McCormick F. p97/DAP5 is a ribosome-associated factor that facilitates protein synthesis and cell proliferation by modulating the synthesis of cell cycle proteins. EMBO J. 2006;25(17):4008–19. doi: 10.1038/sj.emboj.7601268. pmid:16932749
[44]
Gautier R, Douguet D, Antonny B, Drin G. HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics. 2008;24(18):2101–2. doi: 10.1093/bioinformatics/btn392. pmid:18662927
[45]
Akabayov SR, Wagner G. Backbone resonance assignment of the HEAT1-domain of the human eukaryotic translation initiation factor 4GI. Biomol NMR Assign. 2014;8(1):89–91. doi: 10.1007/s12104-013-9459-5. pmid:23325513
[46]
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201. doi: 10.1093/bioinformatics/bti770. pmid:16301204
[47]
Schutz P, Bumann M, Oberholzer AE, Bieniossek C, Trachsel H, Altmann M, et al. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. Proc Natl Acad Sci U S A. 2008;105(28):9564–9. doi: 10.1073/pnas.0800418105. pmid:18606994
[48]
Dang CV, Lee WM. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J Biol Chem. 1989;264(30):18019–23. pmid:2553699
[49]
Kaye NM, Emmett KJ, Merrick WC, Jankowsky E. Intrinsic RNA Binding by the Eukaryotic Initiation Factor 4F Depends on a Minimal RNA Length but Not on the m7G Cap. J Biol Chem. 2009;284(26):17742–50. doi: 10.1074/jbc.M109.009001. pmid:19414591
[50]
Jan E, Sarnow P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. Journal of Molecular Biology. 2002;324(5):889–902. doi: 10.1016/S0022-2836(02)01099-9. pmid:12470947
[51]
Kieft JS, Zhou KH, Jubin R, Doudna JA. Mechanism of ribosome recruitment by hepatitis C IRES RNA. RNA. 2001;7(2):194–206. doi: 10.1017/S1355838201001790. pmid:11233977
[52]
Lomakin IB, Hellen CUT, Pestova TV. Physical association of eukaryotic initiation factor 4G (eIF4G) with eIF4A strongly enhances binding of elF4G to the internal ribosomal entry site of encephalomyocarditis virus and is required for internal initiation of translation. Mol Cell Biol. 2000;20(16):6019–29. doi: 10.1128/Mcb.20.16.6019–6029.2000. pmid:10913184
[53]
Albar L, Bangratz-Reyser M, Hebrard E, Ndjiondjop MN, Jones M, Ghesquiere A. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J. 2006;47(3):417–26. doi: 10.1111/j.1365-313X.2006.02792.x. pmid:16774645
[54]
Belliot G, Sosnovtsev SV, Mitra T, Hammer C, Garfield M, Green KY. In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells. J Virol. 2003;77(20):10957–74. doi: 10.1128/Jvi.77.20.10957–10974.2003. pmid:14512545
[55]
May J, Korba B, Medvedev A, Viswanathan P. Enzyme kinetics of the human norovirus protease control virus polyprotein processing order. Virology. 2013;444(1–2):218–24. doi: 10.1016/j.virol.2013.06.013. pmid:23850457
[56]
Zou P, Gautel M, Geerlof A, Wilmanns M, Koch MH, Svergun DI. Solution scattering suggests cross-linking function of telethonin in the complex with titin. J Biol Chem. 2003;278(4):2636–44. doi: 10.1074/jbc.M210217200. pmid:12446666
[57]
Sweeney TR, Cisnetto V, Bose D, Bailey M, Wilson JR, Zhang X, et al. Foot-and-mouth disease virus 2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis mechanism. J Biol Chem. 2010;285(32):24347–59. doi: 10.1074/jbc.M110.129940. pmid:20507978
[58]
Birtley JR, Curry S. Crystallization of foot-and-mouth disease virus 3C protease: surface mutagenesis and a novel crystal-optimization strategy. Acta Crystallogr D Biol Crystallogr. 2005;61(Pt 5):646–50. doi: 10.1107/S0907444905007924. pmid:15858279
[59]
Moon AF, Mueller GA, Zhong X, Pedersen LC. A synergistic approach to protein crystallization: combination of a fixed-arm carrier with surface entropy reduction. Protein Sci. 2010;19(5):901–13. doi: 10.1002/pro.368. pmid:20196072
[60]
Pisarev AV, Unbehaun A, Hellen CU, Pestova TV. Assembly and analysis of eukaryotic translation initiation complexes. Methods Enzymol. 2007;430:147–77. doi: 10.1016/S0076-6879(07)30007-4. pmid:17913638
[61]
Pestova TV, Hellen CU, Shatsky IN. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol Cell Biol. 1996;16(12):6859–69. pmid:8943341 doi: 10.1128/mcb.16.12.6859
[62]
Follenzi A, Ailles LE, Bakovic S, Geuna M, Naldini L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics. 2000;25(2):217–22. doi: 10.1038/76095. pmid:10835641
[63]
Sorgeloos F, Jha BK, Silverman RH, Michiels T. Evasion of Antiviral Innate Immunity by Theiler's Virus L* Protein through Direct Inhibition of RNase L. PLOS Pathogens. 2013;9(6):e1003474. doi: 10.1371/journal.ppat.1003474. pmid:23825954
[64]
Reijns MA, Bubeck D, Gibson LC, Graham SC, Baillie GS, Jones EY, et al. The structure of the human RNase H2 complex defines key interaction interfaces relevant to enzyme function and human disease. J Biol Chem. 2011;286(12):10530–9. doi: 10.1074/jbc.M110.177394. pmid:21177854
[65]
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995;6(3):277–93. doi: 10.1007/BF00197809. pmid:8520220
[66]
Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol. 1998;72(11):8463–71. pmid:9765382
[67]
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8. doi: 10.1093/bioinformatics/btm404. pmid:17846036