Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion.
References
[1]
Soldati-Favre D. Molecular dissection of host cell invasion by the apicomplexans: the glideosome. Parasite. 2008;15(3):197–205. pmid:18814681 doi: 10.1051/parasite/2008153197
[2]
Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cellular microbiology. 2011;13(6):797–805. doi: 10.1111/j.1462-5822.2011.01597.x. pmid:21535344
[3]
Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. The Journal of cell biology. 1978;77(1):72–82. pmid:96121 doi: 10.1083/jcb.77.1.72
[4]
Shen B, Sibley LD. The moving junction, a key portal to host cell invasion by apicomplexan parasites. Curr Opin Microbiol. 2012;15(4):449–55. doi: 10.1016/j.mib.2012.02.007. pmid:22445360
[5]
Wong SY, Remington JS. Toxoplasmosis in pregnancy. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 1994;18(6):853–61; quiz 62. doi: 10.1093/clinids/18.6.853
[6]
Hakansson S, Morisaki H, Heuser J, Sibley LD. Time-lapse video microscopy of gliding motility in Toxoplasma gondii reveals a novel, biphasic mechanism of cell locomotion. Molecular biology of the cell. 1999;10(11):3539–47. pmid:10564254 doi: 10.1091/mbc.10.11.3539
[7]
Leung JM, Rould MA, Konradt C, Hunter CA, Ward GE. Disruption of TgPHIL1 alters specific parameters of Toxoplasma gondii motility measured in a quantitative, three-dimensional Live motility assay. PloS one. 2014;9(1):e85763. doi: 10.1371/journal.pone.0085763. pmid:24489670
[8]
Hu K, Johnson J, Florens L, Fraunholz M, Suravajjala S, DiLullo C, et al. Cytoskeletal components of an invasion machine—the apical complex of Toxoplasma gondii. PLoS pathogens. 2006;2(2):e13. pmid:16518471 doi: 10.1371/journal.ppat.0020013
[9]
Hu K, Roos DS, Murray JM. A novel polymer of tubulin forms the conoid of Toxoplasma gondii. The Journal of cell biology. 2002;156(6):1039–50. pmid:11901169 doi: 10.1083/jcb.200112086
[10]
Okamoto N, Keeling PJ. The 3D structure of the apical complex and association with the flagellar apparatus revealed by serial TEM tomography in Psammosa pacifica, a distant relative of the Apicomplexa. PloS one. 2014;9(1):e84653. doi: 10.1371/journal.pone.0084653. pmid:24392150
[11]
Wakeman KC, Heintzelman MB, Leander BS. Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa). Protist. 2014;165(4):493–511. doi: 10.1016/j.protis.2014.05.007. pmid:24998785
[12]
Morrissette NS, Sibley LD. Cytoskeleton of apicomplexan parasites. Microbiology and molecular biology reviews: MMBR. 2002;66(1):21–38; table of contents. pmid:11875126 doi: 10.1128/mmbr.66.1.21-38.2002
[13]
Katris NJ, van Dooren GG, McMillan PJ, Hanssen E, Tilley L, Waller RF. The apical complex provides a regulated gateway for secretion of invasion factors in Toxoplasma. PLoS pathogens. 2014;10(4):e1004074. doi: 10.1371/journal.ppat.1004074. pmid:24743791
[14]
Heaslip AT, Nishi M, Stein B, Hu K. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLoS pathogens. 2011;7(9):e1002201. doi: 10.1371/journal.ppat.1002201. pmid:21909263
[15]
Francia ME, Jordan CN, Patel JD, Sheiner L, Demerly JL, Fellows JD, et al. Cell division in Apicomplexan parasites is organized by a homolog of the striated rootlet fiber of algal flagella. PLoS Biol. 2012;10(12):e1001444. doi: 10.1371/journal.pbio.1001444. pmid:23239939
[16]
Mondragon R, Frixione E. Ca(2+)-dependence of conoid extrusion in Toxoplasma gondii tachyzoites. The Journal of eukaryotic microbiology. 1996;43(2):120–7. pmid:8720941 doi: 10.1111/j.1550-7408.1996.tb04491.x
[17]
Carey KL, Westwood NJ, Mitchison TJ, Ward GE. A small-molecule approach to studying invasive mechanisms of Toxoplasma gondii. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(19):7433–8. pmid:15123807 doi: 10.1073/pnas.0307769101
[18]
Del Carmen MG, Mondragon M, Gonzalez S, Mondragon R. Induction and regulation of conoid extrusion in Toxoplasma gondii. Cellular microbiology. 2009;11(6):967–82. doi: 10.1111/j.1462-5822.2009.01304.x. pmid:19416276
[19]
Jena BP. Porosome: the secretory portal in cells. Biochemistry. 2009;48(19):4009–18. doi: 10.1021/bi9002698. pmid:19364126
[20]
Foth BJ, Goedecke MC, Soldati D. New insights into myosin evolution and classification. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(10):3681–6. pmid:16505385 doi: 10.1073/pnas.0506307103
[21]
Meissner M, Schluter D, Soldati D. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science. 2002;298(5594):837–40. pmid:12399593 doi: 10.1126/science.1074553
[22]
Frénal K, Polonais V, Marq JB, Stratmann R, Limenitakis J, Soldati-Favre D. Functional dissection of the Apicomplexan glideosome molecular architecture. Cell host & microbe. 2010;8(4):343–57. doi: 10.1016/j.chom.2010.09.002
[23]
Andenmatten N, Egarter S, Jackson AJ, Jullien N, Herman JP, Meissner M. Conditional genome engineering in Toxoplasma gondii uncovers alternative invasion mechanisms. Nature methods. 2013;10(2):125–7. doi: 10.1038/nmeth.2301. pmid:23263690
[24]
Egarter S, Andenmatten N, Jackson AJ, Whitelaw JA, Pall G, Black JA, et al. The Toxoplasma Acto-MyoA motor complex is important but not essential for gliding motility and host cell invasion. PloS one. 2014;9(3):e91819. doi: 10.1371/journal.pone.0091819. pmid:24632839
[25]
Frénal K, Marq JB, Jacot D, Polonais V, Soldati-Favre D. Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion. PLoS pathogens. 2014;10(10):e1004504. doi: 10.1371/journal.ppat.1004504. pmid:25393004
[26]
Meissner M, Ferguson DJ, Frischknecht F. Invasion factors of apicomplexan parasites: essential or redundant? Curr Opin Microbiol. 2013;16(4):438–44. doi: 10.1016/j.mib.2013.05.002. pmid:23727286
[27]
Drewry LL, Sibley LD. Toxoplasma actin is required for efficient host cell invasion. mBio. 2015;6(3). doi: 10.1128/mbio.00557-15
[28]
Shields CM, Taylor R, Nazarenus T, Cheatle J, Hou A, Tapprich A, et al. Saccharomyces cerevisiae Ats1p interacts with Nap1p, a cytoplasmic protein that controls bud morphogenesis. Current genetics. 2003;44(4):184–94. pmid:13680156 doi: 10.1007/s00294-003-0442-z
[29]
Tran JQ, de Leon JC, Li C, Huynh MH, Beatty W, Morrissette NS. RNG1 is a late marker of the apical polar ring in Toxoplasma gondii. Cytoskeleton. 2010;67(9):586–98. doi: 10.1002/cm.20469. pmid:20658557
[30]
Dobrowolski JM, Sibley LD. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell. 1996;84(6):933–9. pmid:8601316 doi: 10.1016/s0092-8674(00)81071-5
[31]
Endo T, Sethi KK, Piekarski G. Toxoplasma gondii: calcium ionophore A23187-mediated exit of trophozoites from infected murine macrophages. Experimental parasitology. 1982;53(2):179–88. pmid:6800836 doi: 10.1016/0014-4894(82)90059-5
[32]
Pieperhoff MS, Pall GS, Jimenez-Ruiz E, Das S, Melatti C, Gow M, et al. Conditional U1 Gene Silencing in Toxoplasma gondii. PloS one. 2015;10(6):e0130356. doi: 10.1371/journal.pone.0130356. pmid:26090798
[33]
Huynh MH, Carruthers VB. Toxoplasma MIC2 is a major determinant of invasion and virulence. PLoS pathogens. 2006;2(8):e84. pmid:16933991 doi: 10.1371/journal.ppat.0020084
[34]
Donald RG, Zhong T, Wiersma H, Nare B, Yao D, Lee A, et al. Anticoccidial kinase inhibitors: identification of protein kinase targets secondary to cGMP-dependent protein kinase. Molecular and biochemical parasitology. 2006;149(1):86–98. pmid:16765465 doi: 10.1016/j.molbiopara.2006.05.003
[35]
Wiersma HI, Galuska SE, Tomley FM, Sibley LD, Liberator PA, Donald RG. A role for coccidian cGMP-dependent protein kinase in motility and invasion. International journal for parasitology. 2004;34(3):369–80. pmid:15003497 doi: 10.1016/j.ijpara.2003.11.019
[36]
Hakansson S, Charron AJ, Sibley LD. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. The EMBO journal. 2001;20(12):3132–44. pmid:11406590 doi: 10.1093/emboj/20.12.3132
[37]
Sivagurunathan S, Heaslip A, Liu J, Hu K. Identification of functional modules of AKMT, a novel lysine methyltransferase regulating the motility of Toxoplasma gondii. Molecular and biochemical parasitology. 2013. doi: 10.1016/j.molbiopara.2013.05.004
[38]
Herm-Gotz A, Agop-Nersesian C, Munter S, Grimley JS, Wandless TJ, Frischknecht F, et al. Rapid control of protein level in the apicomplexan Toxoplasma gondii. Nature methods. 2007;4(12):1003–5. pmid:17994029 doi: 10.1038/nmeth1134
[39]
Polonais V, Javier Foth B, Chinthalapudi K, Marq JB, Manstein DJ, Soldati-Favre D, et al. Unusual anchor of a motor complex (MyoD-MLC2) to the plasma membrane of Toxoplasma gondii. Traffic. 2011;12(3):287–300. doi: 10.1111/j.1600-0854.2010.01148.x. pmid:21143563
[40]
Shen B, Brown KM, Lee TD, Sibley LD. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/Cas9. mBio. 2014;5(3):e01114–14. doi: 10.1128/mBio.01114-14. pmid:24825012
[41]
Beck JR, Rodriguez-Fernandez IA, de Leon JC, Huynh MH, Carruthers VB, Morrissette NS, et al. A novel family of Toxoplasma IMC proteins displays a hierarchical organization and functions in coordinating parasite division. PLoS pathogens. 2010;6(9):e1001094. doi: 10.1371/journal.ppat.1001094. pmid:20844581
[42]
de Souza W. Fine structure of the conoid of Toxoplasma gondii. Revista do Instituto de Medicina Tropical de Sao Paulo. 1974;16(1):32–8. pmid:4845212 doi: 10.1590/s0036-46652003000300013
[43]
Monteiro VG, de Melo EJ, Attias M, de Souza W. Morphological changes during conoid extrusion in Toxoplasma gondii tachyzoites treated with calcium ionophore. Journal of structural biology. 2001;136(3):181–9. pmid:12051898 doi: 10.1006/jsbi.2002.4444
[44]
Dubremetz JF, Torpier G. Freeze fracture study of the pellicle of an eimerian sporozoite (Protozoa, Coccidia). J Ultrastruct Res. 1978;62(2):94–109. pmid:418187 doi: 10.1016/s0022-5320(78)90012-6
[45]
Xiao H, El Bissati K, Verdier-Pinard P, Burd B, Zhang H, Kim K, et al. Post-translational modifications to Toxoplasma gondii alpha- and beta-tubulins include novel C-terminal methylation. Journal of proteome research. 2010;9(1):359–72. doi: 10.1021/pr900699a. pmid:19886702
[46]
Sibley LD. How apicomplexan parasites move in and out of cells. Current opinion in biotechnology. 2010;21(5):592–8. doi: 10.1016/j.copbio.2010.05.009. pmid:20580218
[47]
Shen B, Sibley LD. Toxoplasma aldolase is required for metabolism but dispensable for host-cell invasion. Proceedings of the National Academy of Sciences of the United States of America. 2014. doi: 10.1073/pnas.1315156111
[48]
Yusuf NA, Green JL, Wall RJ, Knuepfer E, Moon RW, Schulte-Huxel C, et al. The Plasmodium Class XIV myosin, MyoB has a distinct subcellular location in invasive and motile stages of the malaria parasite, and an unusual light chain. The Journal of biological chemistry. 2015. doi: 10.1074/jbc.m115.637694
[49]
Daher W, Plattner F, Carlier MF, Soldati-Favre D. Concerted action of two formins in gliding motility and host cell invasion by Toxoplasma gondii. PLoS pathogens. 2010;6(10):e1001132. doi: 10.1371/journal.ppat.1001132. pmid:20949068
[50]
Jacot D, Daher W, Soldati-Favre D. Toxoplasma gondii myosin F, an essential motor for centrosomes positioning and apicoplast inheritance. The EMBO journal. 2013;32(12):1702–16. doi: 10.1038/emboj.2013.113. pmid:23695356
[51]
Friedrich N, Santos JM, Liu Y, Palma AS, Leon E, Saouros S, et al. Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by apicomplexan parasites. The Journal of biological chemistry. 2010;285(3):2064–76. doi: 10.1074/jbc.M109.060988. pmid:19901027
[52]
Brecht S, Erdhart H, Soete M, Soldati D. Genome engineering of Toxoplasma gondii using the site-specific recombinase Cre. Gene. 1999;234(2):239–47. pmid:10395896 doi: 10.1016/s0378-1119(99)00202-4
[53]
Soldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science. 1993;260(5106):349–52. pmid:8469986 doi: 10.1126/science.8469986
[54]
Fox BA, Ristuccia JG, Gigley JP, Bzik DJ. Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining. Eukaryotic cell. 2009;8(4):520–9. doi: 10.1128/EC.00357-08. pmid:19218423
[55]
Huynh MH, Carruthers VB. Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryotic cell. 2009;8(4):530–9. doi: 10.1128/EC.00358-08. pmid:19218426
[56]
Donald RG, Carter D, Ullman B, Roos DS. Insertional tagging, cloning, and expression of the Toxoplasma gondii hypoxanthine-xanthine-guanine phosphoribosyltransferase gene. Use as a selectable marker for stable transformation. The Journal of biological chemistry. 1996;271(24):14010–9. pmid:8662859 doi: 10.1074/jbc.271.24.14010
[57]
Herm-Gotz A, Weiss S, Stratmann R, Fujita-Becker S, Ruff C, Meyhofer E, et al. Toxoplasma gondii myosin A and its light chain: a fast, single-headed, plus-end-directed motor. The EMBO journal. 2002;21(9):2149–58. pmid:11980712 doi: 10.1093/emboj/21.9.2149
[58]
Plattner F, Yarovinsky F, Romero S, Didry D, Carlier MF, Sher A, et al. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell host & microbe. 2008;3(2):77–87. doi: 10.1016/j.chom.2008.01.001
[59]
Leriche MA, Dubremetz JF. Characterization of the protein contents of rhoptries and dense granules of Toxoplasma gondii tachyzoites by subcellular fractionation and monoclonal antibodies. Molecular and biochemical parasitology. 1991;45(2):249–59. pmid:2038358 doi: 10.1016/0166-6851(91)90092-k
[60]
El Hajj H, Lebrun M, Fourmaux MN, Vial H, Dubremetz JF. Inverted topology of the Toxoplasma gondii ROP5 rhoptry protein provides new insights into the association of the ROP2 protein family with the parasitophorous vacuole membrane. Cellular microbiology. 2007;9(1):54–64. pmid:16879455 doi: 10.1111/j.1462-5822.2006.00767.x
[61]
Brecht S, Carruthers VB, Ferguson DJ, Giddings OK, Wang G, Jakle U, et al. The toxoplasma micronemal protein MIC4 is an adhesin composed of six conserved apple domains. The Journal of biological chemistry. 2001;276(6):4119–27. pmid:11053441 doi: 10.1074/jbc.m008294200
[62]
El Hajj H, Papoin J, Cerede O, Garcia-Reguet N, Soete M, Dubremetz JF, et al. Molecular signals in the trafficking of Toxoplasma gondii protein MIC3 to the micronemes. Eukaryotic cell. 2008;7(6):1019–28. doi: 10.1128/EC.00413-07. pmid:18390648
[63]
Hettmann C, Herm A, Geiter A, Frank B, Schwarz E, Soldati T, et al. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Molecular biology of the cell. 2000;11(4):1385–400. pmid:10749937 doi: 10.1091/mbc.11.4.1385
[64]
Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS pathogens. 2011;7(3):e1002007. doi: 10.1371/journal.ppat.1002007. pmid:21423671
[65]
Mueller C, Klages N, Jacot D, Santos JM, Cabrera A, Gilberger TW, et al. The Toxoplasma protein ARO mediates the apical positioning of rhoptry organelles, a prerequisite for host cell invasion. Cell host & microbe. 2013;13(3):289–301. doi: 10.1016/j.chom.2013.02.001
[66]
Collins CR, Hackett F, Strath M, Penzo M, Withers-Martinez C, Baker DA, et al. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress. PLoS pathogens. 2013;9(5):e1003344. doi: 10.1371/journal.ppat.1003344. pmid:23675297
[67]
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004;5:113. pmid:15318951
[68]
Harb OS, Roos DS. The Eukaryotic Pathogen Databases: a functional genomic resource integrating data from human and veterinary parasites. Methods Mol Biol. 2015;1201:1–18. doi: 10.1007/978-1-4939-1438-8_1. pmid:25388105
[69]
Kessler H, Herm-Gotz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, et al. Microneme protein 8—a new essential invasion factor in Toxoplasma gondii. Journal of cell science. 2008;121(Pt 7):947–56. doi: 10.1242/jcs.022350. pmid:18319299