全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mass Synthesis in Polyol of Tailored Zinc Oxide Nanoparticles for Photovoltaic Applications

DOI: 10.4236/jsemat.2016.61001, PP. 1-10

Keywords: Zinc Oxide, Polyol Process, Nanoparticles, Scale-Up Strategy, Dye-Sensitized Solar Cells

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zinc oxide nanoparticles with different sizes and shapes have been synthesized in polyol using a bottom-up approach. We have studied the scale-up of the process to massively produce high quality nanoparticles of controlled size and shape. The scale-up strategy required the effective mixing of reagents using either axial or radial mixing configurations and was experimentally validated by comparing structural properties of particles obtained in a small and a large size reactor. In addition, the flow patterns in these reactors have been calculated using three-dimensional turbulent computational fluid dynamics (CFD) simulations. Our results indicate a strong connection between the flow patterns, as obtained by CFD simulations, and the size and shape of the particles. Actually, our pilot scale reactor allowed producing sample aliquots of ~50 grams with nanoparticle sizes ranging from 8 nm to 600 nm and aspect ratio varying from 1 (nanospheres) to 20 (nanorods). After their synthesis, these two nanoparticle classes have been tested as building blocks in D149-dye-sensitized solar cell (DSSC). The measured power conversion efficiency (PCE) was 4.66% for nanorods shaped particles and 4.21% for nanospheres. These values were significantly higher than the 3.90% PCE obtained with commercial Degussa VP20 ZnO nanoparticles.

References

[1]  Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. and Pettersson, H. (2010) Dye-Sensitized Solar Cells. Chemical Reviews, 110, 6595-6663.
http://dx.doi.org/10.1021/cr900356p
[2]  Huang, C., Wu, S.-Y., Chang, Y.-C., Pan, C.-H. and Tsai, C.-Y. (2010) The Protection of Flexible DSSC Polymeric Substrate Using Atmospheric Pressure Plasma Coating. Journal of the Chinese Chemical Society, 57, 1208-1211.
http://dx.doi.org/10.1002/jccs.201000177
[3]  Kalyanasundaram, K. (2010) Dye-Sensitized Solar Cells. EPFL Press, Lausanne.
[4]  Kusumawati, Y., Hosni, M., Martoprawiro, M.A., Cassaignon, S. and Pauporté, T. (2014) Charge Transport and Recombination in TiO2 Brookite-Based Photoelectrodes. The Journal of Physical Chemistry C, 118, 23459-23467.
http://dx.doi.org/10.1021/jp5047479
[5]  Liu, J., Cao, G., Yang, Z., Wang, D., Dubois, D., Zhou, X., Graff, G.L., Pederson, L.R. and Zhang, J.-G. (2008) Oriented Nanostructures for Energy Conversion and Storage. ChemSusChem, 1, 676-697.
http://dx.doi.org/10.1002/cssc.200800087
[6]  Magne, C., Dufour, F., Labat, F., Lancel, G., Durupthy, O., Cassaignon, S. and Pauporté, T. (2012) Effects of TiO2 Nanoparticle Polymorphism on Dye-Sensitized Solar Cell Photovoltaic Properties. Journal of Photochemistry and Photobiology A: Chemistry, 232, 22-31.
http://dx.doi.org/10.1016/j.jphotochem.2012.01.015
[7]  Magne, C., Moehl, T., Urien, M., Gratzel, M. and Pauporté, T. (2013) Effects of ZnO Film Growth Route and Nanostructure on Electron Transport and Recombination in Dye-Sensitized Solar Cells. Journal of Materials Chemistry A, 1, 2079-2088.
http://dx.doi.org/10.1039/C2TA00674J
[8]  O'Regan, B. and Gratzel, M. (1991) A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 353, 737-740.
http://dx.doi.org/10.1038/353737a0
[9]  Xu, F., Dai, M., Lu, Y. and Sun, L. (2010) Hierarchical ZnO Nanowire-Nanosheet Architectures for High Power Conversion Efficiency in Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 114, 2776-2782.
http://dx.doi.org/10.1021/jp910363w
[10]  Yasuo, C., Ashraful, I., Yuki, W., Ryoichi, K., Naoki, K. and Liyuan, H. (2006) Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Japanese Journal of Applied Physics, 45, L638.
http://dx.doi.org/10.1143/JJAP.45.L638
[11]  Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M. and Grätzel, M. (2011) Porphyrin-Sensitized Solar Cells with Cobalt (II/III)-Based Redox Electrolyte Exceed 12 Percent Efficiency. Science, 334, 629-634.
http://dx.doi.org/10.1126/science.1209688
[12]  El Belghiti, H., Pauporté, T. and Lincot, D. (2008) Mechanistic Study of ZnO Nanorod Array Electrodeposition. Physica Status Solidi (a), 205, 2360-2364.
http://dx.doi.org/10.1002/pssa.200879443
[13]  Cheng, H.-M. and Hsieh, W.-F. (2010) High-Efficiency Metal-Free Organic-Dye-Sensitized Solar Cells with Hierarchical ZnO Photoelectrode. Energy & Environmental Science, 3, 442-447.
http://dx.doi.org/10.1039/b915725e
[14]  Guerin, V.-M. and Pauporté, T. (2011) From Nanowires to Hierarchical Structures of Template-Free Electrodeposited ZnO for Efficient Dye-Sensitized Solar Cells. Energy & Environmental Science, 4, 2971-2979.
http://dx.doi.org/10.1039/c1ee01218e
[15]  Guerin, V.M., Elias, J., Nguyen, T.T., Philippe, L. and Pauporté, T. (2012) Ordered Networks of ZnO-Nanowire Hierarchical Urchin-Like Structures for Improved Dye-Sensitized Solar Cells. Physical Chemistry Chemical Physics, 14, 12948-12955.
http://dx.doi.org/10.1039/c2cp42085f
[16]  Cheng, H.M., Hsieh, W.F. (2010) Electron Transfer Properties of Organic Dye-Sensitized Solar Cells Based on Indoline Sensitizers with ZnO Nanoparticles. Nanotechnology, 21, 485202.
http://dx.doi.org/10.1088/0957-4484/21/48/485202
[17]  Le Bahers, T., Labat, F., Pauporté, T., Ciofini, I. (2010) Effect of Solvent and Additives on the Open-Circuit Voltage of ZnO-Based Dye-Sensitized Solar Cells: A Combined Theoretical and Experimental Study. Physical Chemistry Chemical Physics, 12, 14710-14719.
http://dx.doi.org/10.1039/c004358c
[18]  Lupan, O., Guérin, V.M., Tiginyanu, I.M., Ursaki, V.V., Chow, L., Heinrich, H., Pauporté, T. (2010) Well-Aligned Arrays of Vertically Oriented ZnO Nanowires Electrodeposited on ITO-Coated Glass and their Integration in Dye Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry, 211, 65-73.
http://dx.doi.org/10.1016/j.jphotochem.2010.02.004
[19]  Zhang, Q., Chou, T.P., Russo, B., Jenekhe, S.A., Cao, G. (2008) Aggregation of ZnO Nanocrystallites for High Conversion Efficiency in Dye-Sensitized Solar Cells. Angewandte Chemie International Edition, 47, 2402-2406.
http://dx.doi.org/10.1002/anie.200704919
[20]  Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K. and Grätzel, M. (2014) Dye-Sensitized Solar Cells with 13% Efficiency Achieved Through the Molecular Engineering of Porphyrin Sensitizers, Nature Chemistry, 6, 242-247.
http://dx.doi.org/10.1038/nchem.1861
[21]  Memarian, N., Concina, I., Braga, A., Rozati, S.M., Vomiero, A., Sberveglieri, G. (2011) Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells. Angewandte Chemie International Edition, 50, 12321-12325.
http://dx.doi.org/10.1002/anie.201104605
[22]  Idígoras, J., Burdzinski, G., Karolczak, J., Kubicki, J., Oskam, G., Anta, J.A., Ziólek, M. (2015) The Impact of the Electrical Nature of the Metal Oxide on the Performance in Dye-Sensitized Solar Cells: New Look at Old Paradigms. The Journal of Physical Chemistry C, 119, 3931-3944.
http://dx.doi.org/10.1021/jp512330f
[23]  Zeng, Y., Zhang, T., Qiao, L. (2009) Preparation and Gas Sensing Properties of the Nutlike ZnO Microcrystals via a Simple Hydrothermal Route. Materials Letters, 63, 843-846.
http://dx.doi.org/10.1016/j.matlet.2009.01.012
[24]  Vafaee, M., Ghamsari, M.S., (2007) Preparation and Characterization of ZnO Nanoparticles by a Novel Sol–Gel Route. Materials Letters, 61, 3265-3268.
http://dx.doi.org/10.1016/j.matlet.2006.11.089
[25]  Guo, L., Ji, Y.L., Xu, H., Simon, P., Wu, Z. (2002) Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure. Journal of the American Chemical Society, 124, 14864-14865.
http://dx.doi.org/10.1021/ja027947g
[26]  Hong, R., Pan, T., Qian, J., Li, H. (2006) Synthesis and Surface Modification of ZnO Nanoparticles. Chemical Engineering Journal, 119, 71-81.
http://dx.doi.org/10.1016/j.cej.2006.03.003
[27]  Ye, J., Zhou, R., Zheng, C., Sun, Q., Lv, Y., Li, C., Hou, X. (2012) Size-Controllable Synthesis of Spherical ZnO Nanoparticles: Size- and Concentration-Dependent Resonant Light Scattering. Microchemical Journal, 100, 61-65.
http://dx.doi.org/10.1016/j.microc.2011.09.002
[28]  Brayner, R., Fiévet, F., Coradin, T. (2013) The Polyol Process. Nanomaterials: A Danger or a Promise? A Chemical and Biological Perspective. Spriengler-Verlag, London.
[29]  Figlarz, M., Fiévet, F. and Lagier, J.P. (1985). French Patent Patent No. 8221483.
[30]  Poul, L., Ammar, S., Jouini, N., Fiévet, F., Villain, F. (2003) Synthesis of Inorganic Compounds (Metal, Oxide and Hydroxide) in Polyol Medium: A Versatile Route Related to the Sol-Gel Process. Journal of Sol-Gel Science and Technology, 26, 261-265.
http://dx.doi.org/10.1023/a:1020763402390
[31]  Dakhlaoui, A., Jendoubi, M., Smiri, L.S., Kanaev, A., Jouini, N. (2009) Synthesis, Characterization and Optical Properties of ZnO Nanoparticles with Controlled Size and Morphology. Journal of Crystal Growth, 311, 3989-3996.
http://dx.doi.org/10.1016/j.jcrysgro.2009.06.028
[32]  Ricolleau,C., Nelayah, J., Oikawa, T., Kohno, Y., Braidy, N., Wang, G., Hue, F., Florea, L., Pierron Bohnes, V. and Alloyeau, D. (2013) Performances of an 80–200 kV Microscope Employing a Cold-FEG and an Aberration-Corrected Objective Lens Microscopy, 62, 283-293.
http://dx.doi.org/10.1093/jmicro/dfs072
[33]  Hosni, M., Kusumawati, Y., Farhat, S., Jouini, N., Pauporté, T. (2014) Effects of Oxide Nanoparticle Size and Shape on Electronic Structure, Charge Transport, and Recombination in Dye-Sensitized Solar Cell Photoelectrodes. The Journal of Physical Chemistry C, 118, 16791-16798.
http://dx.doi.org/10.1021/jp412772b

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133