全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

On Local Existence and Blow-Up of Solutions for Nonlinear Wave Equations of Higher-Order Kirchhoff Type with Strong Dissipation

DOI: 10.4236/ijmnta.2017.61002, PP. 11-25

Keywords: Nonlinear Higher-Order Kirchhoff Type Equation, Strong Damping, Local Solutions, Blow-Up, Initial Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we study on the initial-boundary value problem for nonlinear wave equations of higher-order Kirchhoff type with Strong Dissipation: \"\". At first, we prove the existence and uniqueness of the local solution by the Banach contraction mapping principle. Then, by “Concavity” method we establish three blow-up results for certain solutions in the case 1): \"\", in the case 2): \"\" and in the case 3): \"\". At last, we consider that the estimation of the upper bounds of the blow-up time \"\"is given for deferent initial energy.

References

[1]  Kirchhoff, G. (1883) Vorlesungen über Mechanik. Teubner, Leipzig.
[2]  Ball, J.M. (1997) Remarks on Blow-Up and Nonexistence Theorems for Nonlinear Evolution Equations. The Quarterly Journal of Mathematics, Oxford Series, 28, 473-486.
[3]  Kopácková, M. (1989) Remarks on Bounded Solutions of a Semilinear Dissipative Hyperbolic Equation. Commentationes Mathematicae Universitatis Carolinae, 30, 713-719.
[4]  Haraux, A. and Zuazua, E. (1988) Decay Estimates for Some Semilinear Damped Hyperbolic Problems. Archive for Rational Mechanics and Analysis, 100, 191-206.
https://doi.org/10.1007/BF00282203
[5]  Yang, Z.F. and Qiu, D.H. (2009) Energy Decaying and Blow-Up of Solution for a Kirchhoff Equation with Strong Damping. Journal of Mathematical Research & Exposition, 29, 707-715.
[6]  Kosuke, O. (1997) On Global Existence, Asymptotic Stability and Blowing up of Solutions for Some Degenerate Non-Linear Wave Equations of Kirchhoff Type with a Strong Dissipation. Mathematical Methods in the Applied Sciences, 20, 151-177.
https://doi.org/10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.0.CO;2-0
[7]  Lin, X.L. and Li, F.S. (2013) Global Existence and Decay Estimates for Nonlinear Kirchhoff-Type Equation with Boundary Dissipation. Differential Equations & Applications, 5, 297-317.
https://doi.org/10.7153/dea-05-18
[8]  Ye, Y.J. (2013) Global Existence and Energy Decay Estimate of Solutions for a Higher-Order Kirchhoff Type Equation with Damping and Source Term. Nonlinear Analysis: Real World Applications, 14, 2059-2067.
https://doi.org/10.1016/j.nonrwa.2013.03.001
[9]  Li, M.R. and Tsai, L.Y. (2003) Existence and Nonexistence of Global Solutions of Some System of Semilinear Wave Equations. Nonlinear Analysis, 54, 1397-1415.
https://doi.org/10.1016/S0362-546X(03)00192-5
[10]  Li, F.C. (2004) Global Existence and Blow-Up of Solutions for a Higher-Order Kirchhoff-Type Equation with Nonlinear Dissipation. Applied Mathematics Letters, 17, 1409-1414.
https://doi.org/10.1016/j.am1.2003.07.014
[11]  Wu, S. and Tsai, L. (2006) Blow-Up of Solutions for Some Nonlinear Wave Equations of Kirchhoff Type with Some Dissipation. Nonlinear Analysis: Theory, Methods & Applications, 65, 243-264.
https://doi.org/10.1016/j.na.2004.11.023
[12]  Gazzola, F. and Squassina, M. (2006) Global Solutions and Finite Time Blow up for Semilinear Wave Equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 23, 185-207.
[13]  Lin, G.G. (2011) Nonlinear Evolution Equation. Yunnan University Press, Kunming.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133