全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Significance of Solutions Obtained from Ill-Posed Systems of Linear Equations Constituted by Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering

DOI: 10.4236/alamt.2018.81007, PP. 64-86

Keywords: Matrix Inversion, Condition Numbers, LU-Decomposition, Gaussian Elimination, Synchrotron Radiation, Anomalous Small-Angle X-Ray Scattering

Full-Text   Cite this paper   Add to My Lib

Abstract:

Synchrotron radiation based experimental techniques known as Anomalous Small-Angle X-ray Scattering (ASAXS) provide deep insight into the nanostructure of uncountable material systems in condensed matter research i.e. solid state physics, chemistry, engineering and life sciences thereby rendering the origin of the macroscopic functionalization of the various materials via correlation to its structural architecture on a nanometer length scale. The techniques constitute a system of linear equations, which can be treated by matrix theory. The study aims to analyze the significance of the solutions of the stated matrix equations by use of the so-called condition numbers first introduced by A. Turing, J. von Neumann and H. Goldstine. Special attention was given for the comparison with direct methods i.e. the Gaussian elimination method. The mathematical roots of ill-posed ASAXS equations preventing matrix inversion have been identified. In the framework of the theory of von Neumann and Goldstine the inversion of certain matrices constituted by ASAXS gradually becomes impossible caused by non-definiteness. In Turing’s theory which starts from more general prerequisites, the principal minors of the same matrices approach singularity thereby imposing large errors on inversion. In conclusion both theories recommend for extremely ill-posed ASAXS problems avoiding inversion and the use of direct methods for instance Gaussian elimination.

References

[1]  Turing, A.M. (1948) Rounding-off Errors in Matrix Processes. The Quarterly Journal of Mechanics and Applied Mathematics, 1, 287-308.
https://doi.org/10.1093/qjmam/1.1.287
[2]  Fox, L., Huskey, H.D. and Wilkinson, J.H. (1948) Notes on the Solution of Algebraic Linear Simultaneous Equations. The Quarterly Journal of Mechanics and Applied Mathematics, 1, 149-173.
https://doi.org/10.1093/qjmam/1.1.149
[3]  Hotelling, H. (1943) Some New Methods in Matrix Calculation. The Annals of Mathematical Statistics, 14, 1-34.
https://doi.org/10.1214/aoms/1177731489
[4]  von Neumann, J. and Goldstine H.H. (1947) Numerical Inverting of Matrices of High Order. Bulletin of the American Mathematical Society, 53, 1021-1100.
https://doi.org/10.1090/S0002-9904-1947-08909-6
[5]  Todd, J. (1949) The Condition of Certain Matrices I. The Quarterly Journal of Mechanics and Applied Mathematics, 2, 469-472.
https://doi.org/10.1093/qjmam/2.4.469
[6]  Newman, M. and Todd, J. (1958) The Evaluation of Matrix Inversion Programs. Journal of the Society for Industrial and Applied Mathematics, 6, 466-476.
https://doi.org/10.1137/0106030
[7]  Wilkinson, J.H. (1972) Note on Matrices with a Very Ill-Conditioned Eigenproblem. Numerische Mathematik, 19, 176-178.
https://doi.org/10.1007/BF01402528
[8]  Symm, H.J. and Wilkinson, J.H. (1980) Realistic Error Bounds for a Simple Eigenvalue and Its Associated Eigenvector. Numerische Mathematik, 35, 113-126.
https://doi.org/10.1007/BF01396310
[9]  Olver, J.H. and Wilkinson, F.W. (1982) A Posteriori Error Bounds for Gaussian Elimination. Journal of Numerical Analysis, 2, 377-406.
[10]  Guinier, A. and Fournet, G. (1955) Small-Angle Scattering of X-Rays. Wiley-VCH Verlag GmbH & Co. KGaA, New York.
[11]  Glatter, O. and Kratky, O. (1982) Small-Angle X-Ray Scattering. Academic Press, London.
[12]  Kratky, O. (1983) The World of Negligible Dimensions and Small Angle Diffraction of X-Rays and Neutrons on Biological Macromolecules. Acta Leopoldina, 55, 6-72.
[13]  Goerigk, G., Haubold, H.-G., Lyon, O. and J.-P. Simon J.-P. (2003) Anomalous Small-Angle X-Ray Scattering in Materials Science. Journal of Applied Crystallography, 36, 425-429.
https://doi.org/10.1107/S0021889803000542
[14]  Goerigk, G., Huber, K., Mattern, N. and Williamson, D.L. (2012) Quantitative Anomalous Small-Angle X-Ray Scattering—The Determination of Chemical Concentrations in Nano-scaled Phases. The European Physical Journal Special Topics, 208, 259-274.
https://doi.org/10.1140/epjst/e2012-01623-2
[15]  Goerigk, G.J. (2013) The Solution of the Eigenvector Problem in Synchrotron Radiation Based Anomalous Small-Angle X-Ray Scattering. Advances in Linear Algebra & Matrix Theory, 3, 59-68.
https://doi.org/10.4236/alamt.2013.34012
[16]  Goerigk, G., Schweins, R., Huber, K. and Ballauff M. (2004) The Distribution of Sr2+ Counterions around Polyacrylate Chains Analyzed by Anomalous Small-Angle X-Ray Scattering. Europhysics Letters, 66, 331-337.
https://doi.org/10.1209/epl/i2003-10215-y
[17]  Goerigk, G. and Williamson, D.L. (2006) Temperature Induced Differences in the Nanostructure of Hot-Wire Deposited Silicon-Germanium Alloys Analyzed by Anomalous Small-Angle X-Ray Scattering. Journal of Applied Physics, 99, 1-13.
https://doi.org/10.1063/1.2187088
[18]  Bóta, A., Varga, Z. and Goerigk, G. (2007) Biological Systems as Nanoreactors: Anomalous Small-Angle Scattering Study of the CdS Nanoparticle Formation in Multilamellar Vesicles. The Journal of Physical Chemistry B, 111, 1911-1915.
https://doi.org/10.1021/jp067772n
[19]  Varga, Z., Bóta, A. and Goerigk G. (2007) Localization of Dihalogenated Phenols in Vesicle Systems Determined by Contrast Variation X-Ray Scattering. Journal of Applied Crystallography, 40, 205-208.
https://doi.org/10.1107/S0021889807001987
[20]  Goerigk, G., Huber, K. and Schweins R. (2007) Probing the Extent of the Sr2+ Ion Condensation to Anionic Polyacrylate Coils: A Quantitative Anomalous Small-Angle X-Ray Scattering Study. The Journal of Chemical Physics, 127, 154908-1.
https://doi.org/10.1063/1.2787008
[21]  Bóta, A., Varga, Z. and Goerigk, G. (2008) Structural Description of the Nickel Part of a Raney-type Catalyst by Using Anomalous Small-Angle X-Ray Scattering. The Journal of Physical Chemistry C, 112, 4427-4429.
https://doi.org/10.1021/jp800237b
[22]  Goerigk, G. and Mattern, N. (2009) Critical Scattering of Ni-Nb-Y Metallic Glasses Probed by Quantitative Anomalous Small-Angle X-Ray Scattering. Acta Materialia, 57, 3652-3661.
https://doi.org/10.1016/j.actamat.2009.04.028
[23]  Goerigk, G. and Mattern, N. (2010) Spinodal Decomposition in Ni-Nb-Y Metallic Glasses Analyzed by Quantitative Anomalous Small-Angle X-Ray Scattering. Journal of Physics: Conference Series, 247, 012022.
https://doi.org/10.1088/1742-6596/247/1/012022
[24]  Akiba, I., Takechi, A., Sakou, M., Handa, M., Shinohara, Y., Amemiya, Y., Yagi, N. and Sakurai, K. (2012) Anomalous Small-Angle X-Ray Scattering Study of Structure of Polymer Micelles Having Bromines in Hydrophobic Core. Macromolecules, 45, 6150-6157.
https://doi.org/10.1021/ma300461d
[25]  Goerigk, G.J. (2013) The Impact of the Turing Number on Quantitative ASAXS Measurements of Ternary Alloys. JOM, 65, 44-53.
https://doi.org/10.1007/s11837-012-0451-9
[26]  Lages, S., Goerigk, G. and Huber, K. (2013) SAXS and ASAXS on Dilute Sodium Polyacrylate Chains Decorated with Lead Ions. Macromolecules, 46, 3570-3580.
https://doi.org/10.1021/ma400427d
[27]  Sakou, M., Takechi, A., Murakami, S., Sakurai, K. and Akiba, I. (2013) Study of the Internal Structure of Polymer Micelles by Anomalous Small-Angle X-Ray Scattering at Two Edges. Journal of Applied Crystallography, 46, 1407-1413.
https://doi.org/10.1107/S0021889813022450
[28]  Michels, R., Goerigk, G., Vainio, U., Gummel, J. and Huber, K. (2014) Coaggregation of Two Anionic Azo Dyestuffs: A Combined Static Light Scattering and Small-Angle X-Ray Scattering Study. The Journal of Physical Chemistry B, 118, 7618-7629.
https://doi.org/10.1021/jp502347b
[29]  Weber, C., Reichenauer, G., and Pflaum, J. (2015) Electroless Preparation and ASAXS Microstructural Analysis of Pseudocapacitive Carbon Manganese Oxide Supercapacitor Electrodes. Langmuir, 31, 782-788.
https://doi.org/10.1021/la5027762
[30]  Goerigk, G., Lages, S. and Huber, K. (2016) Systematic Limitations in Concentration Analysis via Anomalous Small-Angle X-Ray Scattering in the Small Structure Limit. Polymers, 8, 1-15.
https://doi.org/10.3390/polym8030085
[31]  Stuhrmann, H.B. (1985) Resonance Scattering in Macromolecular Structure Research. In: Kausch, H.H. and Zachmann, H.G., Eds., Characterization of Polymers in the Solid State II: Synchrotron Radiation, X-Ray Scattering and Electron Microscopy. Advances in Polymer Science, Vol. 67, Springer-Verlag, Berlin, 123-163.
https://doi.org/10.1007/BFb0016608
[32]  Higashi, M., Domen, K. and Abe, R. (2011) Fabrication of Efficient TaON and Ta3N5 Photoanodes for Water Splitting under Visible Light Irradiation. Energy & Environmental Science, 4, 4138.
https://doi.org/10.1039/c1ee01878g
[33]  Westlake, J.R. (1968) A Handbook of Numerical Matrix Inversion and Solution of Linear Equations. John Wiley & Sons, New York.
[34]  Buth, G. (1992) Untersuchung der Mikrostruktur magnetooptischer Speicherschichten mit Rontgenkleinwinkelstreuung unter Anwendung der Kontrastvariationsmethode. RWTH Aachen, Aachen.
[35]  Cromer, D.T. and Liberman, D. (1970) Relativistic Calculation of Anomalous Scattering Factors for X Rays. The Journal of Chemical Physics, 53, 1891-1898.
https://doi.org/10.1063/1.1674266
[36]  Cromer, D.T. and Liberman, D. (1981) Anomalous Dispersion Calculations Near to and on the Long-Wavelength Side of an Absorption Edge. Acta Crystallographica, A37, 267-268.
https://doi.org/10.1107/S0567739481000600

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133