全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Inertial Manifold for a Class of Nonlinear Higher-Order Coupled Kirchhoff Equations with Strong Linear Damping

DOI: 10.4236/ijmnta.2018.72003, PP. 35-47

Keywords: Higher-Order Kirchhoff System, Hadamard Graph Transformation, Spectral Gap Condition, Inertial Manifold

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper considers the long-time behavior for a system of coupled wave equations of higher-order Kirchhoff type with strong damping terms. Using the Hadamard graph transformation method, we obtain the existence of the inertial manifold while such equations satisfy the spectral interval condition.

References

[1]  Foias, C., Sell, G.R. and Temam, R. (1985) Varietes inertielles des equations differentielles dissipatives. Comptes Rendus de I Academie des Science-Series I-Mathematics, 301, 139-142.
[2]  Constantin, P., Foias, C., Nicolaenko, B. and Temam, R. (1988) Integral and Inertial Manifolds for Dissipative Partial Differential Equations. Applied Mathematical Sciences, Springer-Verlag, New York, 70.
[3]  Fabes, E., Luskin, M. and Sell, G.R. (1991) Construction of Inertial Manifolds by Elliptic Regularization. Journal of Differential Equations, 89, 335-381.
https://doi.org/10.1016/0022-0396(91)90125-S
[4]  Dai, Z.D. and Guo, B.L. (2000) Inertial Manifold and Approximate Inertial Manifold. Science Press, Beijing.
[5]  Wu, J.Z. and Lin, G.G. (2010) Inertial Manifolds for Two-Dimensional Strong Damped Boussinesq Equations. Journal of Yunnan University, 32, 119-124.
[6]  Xu, G.G., Wang, L.B. and Lin, G.G. (2014) Inertial Manifolds for a Class of Nonlinear Time-Delay Wave Equations. Applied Mathematics, 27, 887-891.
[7]  Guo, Y.M. and Li, H.H. (2016) Inertial Manifolds for a Strongly Dissipative Nonlinear Wave Equation. Journal of Anyang Normal University, 5, 62-65.
[8]  Chen, L., Wang, W. and Lin, G.G. (2016) Exponential Attractors and Inertial Manifolds for the Higher-Order Nonlinear Kirchhoff-Type Equation. International Journal of Modern Communication Technologies & Research, 11, 6-12.
[9]  Teman, R. (1988) Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133