全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Suppression of Highly Pathogenic Avian Influenza A/H5N1 Infection Using Migratory Antibody Passed from Mother to Chick

DOI: 10.4236/wjv.2018.84008, PP. 89-97

Keywords: Avian Flu, Influenza Virus, H5N1, Antibody, Chicken

Full-Text   Cite this paper   Add to My Lib

Abstract:

Avian influenza is the most contagious disease not only in poultry, but also in humans. Avian influenza in humans occurs mainly in Southeast Asia, but no human-to-human pandemic has occurred. Meanwhile, outbreaks of avian influenza in poultry occur on a global scale and cause a large economic loss. Migration antibodies passed from mother birds via eggs are said to be an important component of the immune system that protects birds from infection. Thus, the immunity status of mother birds can determine the ability of offspring to defend against infection. In this study, we investigated the presence of anti-avian influenza virus antibody in chickens hatched on a poultry farm in Indonesia and examined the involvement of migratory antibodies in protecting against virus infection by infectious experiments of highly pathogenic avian influenza in chickens. Blood was collected from randomly selected chicks, and antibodies against avian influenza virus were evaluated in all birds. Since these young birds had no history of vaccination, the antibodies were deemed to have been transferred from the mother birds. The enzyme-linked immunosorbent assay antibody titer in each bird varied. Infection of these birds with highly pathogenic avian influenza virus A/H5N1 intra-nasally resulted in a high mortality rate in chicks with low antibody titers but a low mortality rate in chicks with high antibody titers. These findings indicate that migratory antibody prevented highly pathogenic avian influenza A/H5N1 infection in chicks, suggesting that such a preventive effect could also be expected with outdoor natural infection.

References

[1]  Hamal, K.R., Burgess, S.C., Pevzner, I.Y. and Erf, G.F. (2006) Maternal Antibody Transfer from Dams to Their Egg Yolks, Egg Whites, and Chicks in Meat Lines of Chickens. Poultry Science, 85, 1364-1372.
https://doi.org/10.1093/ps/85.8.1364
[2]  Schade, R., Pfister, C., Halatsch, R. and Henklein, P. (1991) Polyclonal IgY Antibodies from Chicken Egg Yolk. An Alternative to the Production of Mammalian IgG Type Antibodies in Rabbits. ATLA, 19, 403-419.
[3]  Schade, R., Schniering, A. and Hlinak, A. (1992) Polyclonal Avian Antibodies Extracted from Egg Yolk as an Alternative to the Production of Antibodies in Mammals: A Review. ALTEX, 9, 43-56.
[4]  Zhang, X., Calvert, R.A., Sutton, B.J. and Doré, K.A. (2017) IgY: A Key Isotype in Antibody Evolution. Biological Reviews Cambridge Philosophical Society, 92, 2144-2156.
https://doi.org/10.1111/brv.12325
[5]  Calnek, B.W., Luginbuhl, R.E. and Helmboldt, C.F. (1997) Avian Encephalomyelitis. In: Calnek, B.W., Barnes, H.J., Beard, C.W., McDougald, L.R. and Saif, Y.M., Eds., Diseases of Poultry, 10th Edition, Iowa State University Press, Iowa, 571-582.
[6]  Horman, W.S.J., Nguyen, T.H.O., Kedzierska, K., Bean, A.G.D. and Layton, D.S. (2018) The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Frontiers in Immunology, 9, 1812.
[7]  Chatziprodromidou, I.P., Arvanitidou, M., Guitian, J., Apostolou, T., Vantarakis, G. and Vantarakis (2018) Global Avian Influenza Outbreaks 2010-2016: A Systematic Review of Their Distribution, Avian Species and Virus Subtype. Systematic Reviews, 7, 17.
https://doi.org/10.1186/s13643-018-0691-z
[8]  Suarez, D.L. and Schultz-Cherry, S. (2000) Immunology of Avian Influenza Virus: A Review. Developmental & Comparative Immunology, 24, 269-283.
https://doi.org/10.1016/S0145-305X(99)00078-6
[9]  Alexander, D.J. and Brown, I.H. (2000) Recent Zoonoses Caused by Influenza A Viruses. Revue Scientifique et Technique, 19, 197-225.
https://doi.org/10.20506/rst.19.1.1220
[10]  Harfoot, R. and Webby, R.J. (2017) H5 influenza, A Global Update. Journal of Microbiology, 55, 196-203.
https://doi.org/10.1007/s12275-017-7062-7
[11]  Artois, J., Ippoliti, C., Conte, A., Dhingra, M.S., Alfonso, P., Tahawy, A.E., Elbestawy, A., Ellakany, H.F. and Gilbert, M. (2018) Avian Influenza A (H5N1) Outbreaks in Different Poultry Farm Types in Egypt: The Effect of Vaccination, Closing Status and Farm Size. BMC Veterinary Research, 14, 187.
https://doi.org/10.1186/s12917-018-1519-8
[12]  Swayne, D.E., Spackman, E. and Pantin-Jackwood, M. (2014) Success Factors for Avian Influenza Vaccine Use in Poultry and Potential Impact at the Wild Bird-Agricultural Interface. EcoHealth, 11, 94-108.
https://doi.org/10.1007/s10393-013-0861-3
[13]  Adachi, K., Takama, K., Ozaki, M., Fukuda, K., Endo, I., Yamamoto, R. and Tsukamoto, Y. (2008) Inhibition of H5N1 Avian Influenza Virus Infection by Ostrich Antibodies. Molecular Medicine Reports, 1, 2003-2009.
[14]  Adachi, K., Kato, T., Kirimura, N., Kubota, Y., Shiba, H. and Tsukamoto, Y. (2014) Double Infections with Avian A/H5N1 and Swine A/H1N1 Influenza Viruses in Chickens. American International Journal of Biology, 2, 58-94.
https://doi.org/10.15640/aijb.v2n3-4a6
[15]  Kamiyama, Y., Adachi, K., Handharyani, E., Soejoedono, R.D., Kusano, T., Inai, M., Tsukamoto, M., Kashiwagi, S. and Tsukamoto, Y. (2011) Protection from Avian Influenza H5N1 Virus Infection with Antibody-Impregnated Filters. Virology Journal, 8, 54. (Online)
https://doi.org/10.1186/1743-422X-8-54

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133