全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Recent Advances in the Quest for Treatment and Management of Alzheimer and Other Dementia

DOI: 10.4236/ojmc.2019.91001, PP. 1-35

Keywords: Alzheimer, β Amyloid, Tau, Acetylcholinesterase, Amyloid Precursor Protein, Plaques, Tangles, Neurodegeneration

Full-Text   Cite this paper   Add to My Lib

Abstract:

Alzheimer’s disease (AD) is a neurodegenerative disease distinguished by progressive cognitive deterioration along with declining activities of daily living and behavioral changes. It is the commonest type of pre-senile and senile dementia. Many new therapeutic strategies have been developed in the last few years. We aimed at reviewing the evidence supporting these new therapeutic targets, including anti-amyloid and anti-Tau strategies. This review is focused on important future direction in investigation of potential therapeutic targets for AD drug discovery. Medical advances have improved treatment of many diseases but still there is a need to establish new tools for early diagnosis of AD. A thorough comprehensive understanding of the unexplored mechanism can ameliorate the diagnostic and therapeutic management of AD. There have been several disease-modifying therapeutic strategies for AD in the last few years and are presently at various phases of investigation. Few of them have shown promising results, but their safety and efficacy need to be further explored.

References

[1]  Lane, C.A., Hardy, J. and Schott, J.M. (2018) Alzheimer’s Disease. European Journal Neuroscience, 25, 59-70.
https://doi.org/10.1111/ene.13439
[2]  Rizzi, L., Rosset, I. and Roriz-Cruz, M. (2014) Global Epidemiology of Dementia: Alzheimer’s and Vascular Types. BioMed Research International, 2014, Article ID 908915.
https://doi.org/10.1155/2014/908915
[3]  Imbimbo, B.P., Lombard, J. and Pomara, N. (2005) Pathophysiology of Alzheimer’s Disease. Neuroimaging Clinics of North America, 15, 727-753.
https://doi.org/10.1016/j.nic.2005.09.009
[4]  Alzheimer’s Association (2013) Alzheimer’s Disease Facts and Figures. Alzheimer’s Dementia, 9, 208-245.
https://doi.org/10.1016/j.jalz.2013.02.003
[5]  Goedert, M. and Spillantini, M.G. (2006) A Century of Alzheimer’s Disease. Science, 314, 777-781.
https://doi.org/10.1126/science.1132814
[6]  Talesa, V.N. (2001) Acetylcholinesterase in Alzheimer’s Disease. Mechanism of Ageing and Development, 122, 1961-1969.
https://doi.org/10.1016/S0047-6374(01)00309-8
[7]  Hardy, J. and Selkoe, D.J. (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356.
https://doi.org/10.1126/science.1072994
[8]  Hardy, J. (2006) Alzheimer’s Disease: The Amyloid Cascade Hypothesis: An Update and Reappraisal. Journal of Alzheimer’s Disease, 9, 151-153.
https://doi.org/10.3233/JAD-2006-9S317
[9]  Barnham, K.J., Masters, C.L. and Bush, A.I. (2004) Neurodegenerative Diseases and Oxidative Stress. Nature Reviews Drug Discovery, 3, 205-214.
https://doi.org/10.1038/nrd1330
[10]  Hegde, M.L., Bharathi, P., Suram, A., Venugopal, C., Jagannathan, R., Poddar, P., Srinivas, P., Sambamurti, K., Rao, K.J., Scancar, J., Messori, L., Zecca, L. and Zatta, P. (2009) Challenges Associated with Metal Chelation Therapy in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 17, 457-468.
https://doi.org/10.3233/JAD-2009-1068
[11]  Bolognin, S., Drago, D., Messori, L. and Zatta, P. (2009) Chelation Therapy for Neurodegenerative Diseases. Medicinal Research Reviews, 29, 547-570.
https://doi.org/10.1002/med.20148
[12]  Kumar, A., Nisha, C.M., Silakari, C., Sharma, I., Anusha, K., Gupta, N., Nair, P., Tripathi, T. and Kumar, A. (2016) Current and Novel Therapeutic Molecules and Targets in Alzheimer’s Disease. Journal of the Formosan Medical Association, 115, 3-10.
https://doi.org/10.1016/j.jfma.2015.04.001
[13]  Anand, P. and Singh, B. (2013) A Review on Cholinesterase Inhibitors for Alzheimer’s Disease. Archives of Pharmacal Research, 36, 375-399.
https://doi.org/10.1007/s12272-013-0036-3
[14]  Lo, D. and Grossberg, G.T. (2011) Use of Memantine for the Treatment of Dementia. Expert Review of Neurotherapeutics, 11, 1359-1370.
https://doi.org/10.1586/ern.11.132
[15]  Stahl, S.M. (2013) Stahl’s Essential Psychopharmacology. Neuroscientific Basis and Practical Applications. 4th Edition, Vol. 8, Cambridge University Press, Cambridge, 146-150.
[16]  Vassar, R., Kuhn, P.H., Haass, C., Kennedy, M.E., Rajendran, L., Wong, P.C. and Lichtenthaler, S.F. (2014) Function, Therapeutic Potential and Cell Biology of BACE Proteases: Current Status and Future Prospects. Journal of Neurochemistry, 130, 4-28.
https://doi.org/10.1111/jnc.12715
[17]  Oehlrich, D., Prokopcova, H. and Gijsen, H.J. (2014) The Evolution of Amidine-Based Brain Penetrant BACE1 Inhibitors. Bioorganic and Medicinal Chemistry Letters, 24, 2033-2045.
https://doi.org/10.1016/j.bmcl.2014.03.025
[18]  Lewerenz, J. and Maher, P. (2015) Chronic Glutamate Toxicity in Neurodegenerative Diseases—What Is the Evidence? Frontiers in Neuroscience, 9, 469-489.
https://doi.org/10.3389/fnins.2015.00469
[19]  Hu, N.W., Ondrejcak, T. and Rowan, M.J. (2012) Glutamate Receptors in Preclinical Research on Alzheimer’s Disease: Update on Recent Advances. Pharmacology Biochemistry and Behavior, 100, 855-862.
https://doi.org/10.1016/j.pbb.2011.04.013
[20]  Xie, Q., Wang, H., Xia, Z., Lu, M., Zhang, W., Wang, X., Fu, W., Tang, Y., Sheng, W., Li, W., Zhou, W., Zhu, X., Qiu, Z. and Chen, H. (2008) Bis-(−)-Nor-Meptazinols as Novel Nanomolar Cholinesterase Inhibitors with High Inhibitory Potency on Amyloid-Beta Aggregation. Journal of Medicinal Chemistry, 51, 2027-2036.
https://doi.org/10.1021/jm070154q
[21]  Munoz-Torrero, D. (2008) Acetylcholinesterase Inhibitors as Disease-Modifying Therapies for Alzheimer’s Disease. Current Medicinal Chemistry, 15, 2433-2455.
https://doi.org/10.2174/092986708785909067
[22]  Shao, Z.-Q. (2015) Comparison of the Efficacy of Four Cholinesterase Inhibitors in Combination with Memantine for the Treatment of Alzheimer’s Disease. International Journal of Clinical and Experimental Medicine, 8, 2944-2948.
[23]  Takeda, A., Loveman, E., Clegg, A., Kirby, J., Picot, J., Payne, E. and Green, C. (2006) A Systematic Review of the Clinical Effectiveness of Donepezil, Rivastigmine and Galantamine on Cognition, Quality of Life and Adverse Events in Alzheimer’s Disease. International Journal of Geriatric Psychopharmacology, 21, 17-28.
https://doi.org/10.1002/gps.1402
[24]  Raina, P., Santaguida, P., Ismaila, A., Patterson, C., Cowan, D., Levine, M., Booker, L. and Oremus, M. (2008) Effectiveness of Cholinesterase Inhibitors and Memantine for Treating Dementia: Evidence Review for a Clinical Practice Guideline. Annals of Internal Medicine, 148, 379-397.
https://doi.org/10.7326/0003-4819-148-5-200803040-00009
[25]  Grossman, I., Lutz, M.W., Crenshaw, D.G., Saunders, A.M., Burns, D.K. and Roses, A.D. (2010) Alzheimer’s Disease: Diagnostics, Prognostics and the Road to Prevention. EPMA Journal, 1, 293-303.
https://doi.org/10.1007/s13167-010-0024-3
[26]  Thal, L.J., Kantarci, K., Reiman, E.M., Klunk, W.E., Weiner, M.W., Zetterberg, H., Galasko, D., Praticò, D., Griffin, S., Schenk, D. and Siemers, E. (2006) The Role of Biomarkers in Clinical Trials for Alzheimer Disease. Alzheimer Disease and Associated Disorders, 20, 6-15.
https://doi.org/10.1097/01.wad.0000191420.61260.a8
[27]  Lane, R.F., Dacks, P.A., Shineman, D.W. and Lane, H.M.F. (2013) Diverse Therapeutic Targets and Biomarkers for Alzheimer’s Disease and Related Dementias: Report on the Alzheimer’s Drug Discovery Foundation 2012 International Conference on Alzheimer’s Drug Discovery. Alzheimer’s Research & Therapy, 5, 5-9.
https://doi.org/10.1186/alzrt159
[28]  Vos, S.J.B., Gordon, B.A., Su, Y., Visser, P.J., Holtzman, D.M., Morris, J.C., Fagan, A.M. and Benzinger, T.L.S. (2016) NIA-AA Staging of Preclinical Alzheimer Disease: Discordance and Concordance of CSF and Imaging Biomarkers. Neurobiology of Aging, 44, 1-8.
https://doi.org/10.1016/j.neurobiolaging.2016.03.025
[29]  Proitsi, P., Kim, M., Whiley, L., Simmons, A., Sattlecker, M., Velayudhan, L., Lupton, M.K., Soininen, H., Kloszewska, I., Mecocci, P., Tsolaki, M., Vellas, B., Lovestone, S., Powell, J.F., Dobson, R.J. and Legido-Quigley, C. (2017) Association of Blood Lipids with Alzheimer’s Disease: A Comprehensive Lipidomics Analysis. Alzheimer’s & Dementia, 13, 140-151.
https://doi.org/10.1016/j.jalz.2016.08.003
[30]  Yilmaz, A., Geddes, T., Han, B., Bahado-Singh, R.O., Wilson, G.D., Imam, K., Maddens, M. and Graham, S.F. (2017) Diagnostic Biomarkers of Alzheimer’s Disease as Identified in Saliva Using 1H NMR-Based Metabolomics. Journal of Alzheimer’s Disease, 58, 355-359.
https://doi.org/10.3233/JAD-161226
[31]  Blennow, K., Mattsson, N., Schöll, M., Hansson, O. and Zetterberg, H. (2015) Amyloid Biomarkers in Alzheimer’s Disease. Trends in Pharmacological Sciences, 36, 297-309.
https://doi.org/10.1016/j.tips.2015.03.002
[32]  Nabers, A., Ollesch, J., Schartner, J., Kötting, C., Genius, J., Hafermann, H., Klafki, H., Gerwert, K., Wiltfang, J. and Gerwert, K. (2016) Amyloid-β-Secondary Structure Distribution in Cerebrospinal Fluid and Blood Measured by an Immuno-Infrared-Sensor: A Biomarker Candidate for Alzheimer’s Disease. Analytical Chemistry, 88, 2755-2762.
https://doi.org/10.1021/acs.analchem.5b04286
[33]  Nakamura, A., Kaneko, N., Villemagne, V.L., Kato, T., Doecke, J., Doré, V., Fowler, C., Li, Q.-X., Martins, R., Rowe, C., Tomita, T., Matsuzaki, K., Ishii, K., Ishii, K., Arahata, Y., Iwamoto, S., Ito, K., Tanaka, K., Masters, C.L. and Yanagisawa, K. (2018) High Performance Plasma Amyloid-β Biomarkers for Alzheimer’s Disease. Nature, 554, 249-254.
https://doi.org/10.1038/nature25456
[34]  Ovod, V., Ramsey, K.N., Mawuenyega, K.G., Bollinger, J.G., Hicks, T., Schneider, T., Sullivan, M., Paumier, K., Holtzman, D.M., Morris, J.C., Benzinger, T., Fagan, A.M., Patterson, B.W. and Bateman, R.J. (2017) Amyloid β Concentrations and Stable Isotope Labeling Kinetics of Human Plasma Specific to Central Nervous System Amyloidosis. Alzheimer’s Dementia, 13, 841-849.
https://doi.org/10.1016/j.jalz.2017.06.2266
[35]  Lad E.M., Mukherjee, D., Stinnett, S.S., Cousins, S.W., Potter, G.G., Burke, J.R., Farsiu, S. and Whitson, H.E. (2018) Evaluation of Inner Retinal Layers as Biomarkers in Mild Cognitive Impairment to Moderate Alzheimer’s Disease. PLoS ONE, 13, e0192646.
https://doi.org/10.1371/journal.pone.0192646
[36]  Kreisl, W.C., Henter, I.D. and Innis, R.B. (2018) Imaging Translocator Protein as a Biomarker of Neuroinflammation in Dementia. Advances in Pharmacology, 82, 163-185.
https://doi.org/10.1016/bs.apha.2017.08.004
[37]  Lu, J., Shu, R. and Zhu, Y. (2018) Dysregulation and Dislocation of SFPQ Disturbed DNA Organization in Alzheimer’s Disease and Frontotemporal Dementia. Journal of Alzheimer’s Disease, 61, 1311-1321.
https://doi.org/10.3233/JAD-170659
[38]  Gurel, B., Cansev, M., Sevinc, C., Kelestemur, S., Ocalan, B., Cakir, A., Aydin, S., Kahveci, N., Ozansoy, M., Taskapilioglu, O., Ulus, I.H., Bașar, M.K., Sahin, B., Tuzuner, M.B. and Baykal, A.T. (2018) Early Stage Alterations in CA1 Extracellular Region Proteins Indicate Dysregulation of IL6 and Iron Homeostasis in the 5XFAD Alzheimer’s Disease Mouse Model. Journal of Alzheimer’s Disease, 61, 1399-1410.
https://doi.org/10.3233/JAD-170329
[39]  Xia, H., Wu, L., Chu, M., Feng, H., Lu, C. and Wang, Q. (2017) Effects of Breviscapine on Amyloid Beta 1-42 Induced Alzheimer’s Disease Mice: A HPLC-QTOF-MS Based Plasma Metabonomics Study. Journal of Chromatography B, 1057, 92-100.
https://doi.org/10.1016/j.jchromb.2017.05.003
[40]  Jian, C., Lu, M., Zhang, Z., Liu, L., Li, X., Huang, F., Xu, N., Qin, L., Zhang, Q. and Zou, D. (2017) MiR-34a Knockout Attenuates Cognitive Deficits in APP/PS1 Mice through Inhibition of the Amyloidogenic Processing of APP. Life Sciences, 182, 104-111.
https://doi.org/10.1016/j.lfs.2017.05.023
[41]  Xu, Y., Li, X., Wang, X., Yao, J. and Zhuang, S. (2018) MiR-34a Deficiency in APP/PS1 Mice Promotes Cognitive Function by Increasing Synaptic Plasticity via AMPA and NMDA Receptors. Neuroscience Letters, 670, 94-104.
https://doi.org/10.1016/j.neulet.2018.01.045
[42]  Morphy, R. and Rankovic, Z. (2005) Designed Multiple Ligands. An Emerging Drug Discovery Paradigm. Journal of Medicinal Chemistry, 48, 6523-6543.
https://doi.org/10.1021/jm058225d
[43]  Rosini, M., Simoni, E., Caporaso, R. and Minarini, A. (2016) Multitarget Strategies in Alzheimer’s Disease: Benefits and Challenges on the Road to Therapeutics. Future Medicinal Chemistry, 8, 697-711.
https://doi.org/10.4155/fmc-2016-0003
[44]  Prati, F., Cavalli, A. and Bolognesi, M.L. (2016) Navigating the Chemical Space of Multitarget-Directed Ligands: From Hybrids to Fragments in Alzheimer’s Disease. Molecules, 21, 466-478.
https://doi.org/10.3390/molecules21040466
[45]  Spilovska, K., Korabecny, J., Nepovimova, E., Dolezal, R., Mezeiova, E., Soukup, O. and Kuca, K. (2017) Multitarget Tacrine Hybrids with Neuroprotective Properties to Confront Alzheimer’s Disease. Current Topics in Medicinal Chemistry, 17, 1006-1026.
https://doi.org/10.2174/1568026605666160927152728
[46]  Mohamed, T., Shakeri, A. and Rao, P.P.N. (2016) Amyloid Cascade in Alzheimer’s Disease: Recent Advances in Medicinal Chemistry. European Journal of Medicinal Chemistry, 113, 258-272.
https://doi.org/10.1016/j.ejmech.2016.02.049
[47]  Ismaili, L., Refouvelet, B., Benchekroun, M., Brogi, S., Brindisi, M., Gemma, S., Campiani, G., Filipic, S., Agbaba, D. and Esteban, G. (2017) Multitarget Compounds Bearing Tacrine- and Donepezil-Like Structural and Functional Motifs for the Potential Treatment of Alzheimer’s Disease. Progress in Neurobiology, 151, 4-34.
https://doi.org/10.1016/j.pneurobio.2015.12.003
[48]  Mohamed, T. and Rao, P.P.N. (2017) 2,4-Disubstituted Quinazolines as Amyloid-β Aggregation Inhibitors with Dual Cholinesterase Inhibition and Antioxidant Properties: Development and Structure-Activity Relationship (SAR) Studies. European Journal of Medicinal Chemistry, 126, 823-843.
https://doi.org/10.1016/j.ejmech.2016.12.005
[49]  Sola, I., Aso, E., Frattini, D., López-González, I., Espargaró, A., Sabaté, R., Di Pietro, O., Luque, F.J., Clos, M.V. and Ferrer, I. (2015) Novel Levetiracetam Derivatives That Are Effective against the Alzheimer-Like Phenotype in Mice: Synthesis, in Vitro, ex Vivo, and in Vivo Efficacy Studies. Journal of Medicinal Chemistry, 58, 6018-6032.
https://doi.org/10.1021/acs.jmedchem.5b00624
[50]  Darras, F.H., Pockes, S., Huang, G., Wehle, S., Strasser, A., Wittmann, H.-J., Nimczick, M., Sotriffer, C.A. and Decker, M. (2014) Synthesis, Biological Evaluation, and Computational Studies of Tri- and Tetracyclic Nitrogen-Bridgehead Compounds as Potent Dual-Acting AChE Inhibitors and hH3 Receptor Antagonists. ACS Chemical Neuroscience, 5, 225-242.
https://doi.org/10.1021/cn4002126
[51]  Bautista-Aguilera, ó.M., Hagenow, S., Palomino-Antolin, A., Farré-Alins, V., Ismaili, L., Joffrin, P.-L., Jimeno, M.L. Soukup, O., Janocková, J. and Kalinowsky, L. (2017) Multitarget-Directed Ligands Combining Cholinesterase and Monoamine Oxidase Inhibition with Histamine H3R Antagonism for Neurodegenerative Diseases. Angewandte Chemie International Edition, 56, 12765-12769.
https://doi.org/10.1002/anie.201706072
[52]  Rochais, C., Lecoutey, C., Gaven, F., Giannoni, P., Hamidouche, K., Hedou, D., Dubost, E., Genest, D., Yahiaoui, S., Freret, T., Bouet, V., Dauphin, F., Sopkova de Oliveira Santos, J., Ballandonne, C., Corvaisier, S., Malzert-Fréon, A., Legay, R., Boulouard, M., Claeysen, S. and Dallemagne, P. (2015) Novel Multitarget-Directed Ligands (MTDLs) with Acetylcholinesterase (AChE) Inhibitory and Serotonergic Subtype 4 Receptor (5-HT4R) Agonist Activities as Potential Agents against Alzheimer’s Disease: The Design of Donecopride. Journal of Medicinal Chemistry, 58, 3172-3187.
https://doi.org/10.1021/acs.jmedchem.5b00115
[53]  Wang, Z., Hu, J., Yang, X., Feng, X., Li, X., Huang, L. and Chan, A.S.C. (2018) Design, Synthesis and Evaluation of Orally Bioavailable Quinoline-Indole Derivatives as Innovative Multitarget-Directed Ligands: Promotion of Cell Proliferation in the Adult Murine Hippocampus for the Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry, 61, 1871-1894.
https://doi.org/10.1021/acs.jmedchem.7b01417
[54]  Esteban, G., Van Schoors, J., Sun, P., Van Eeckhaut, A., Marco-Contelles, J., Smolders, I. and Unzeta, M. (2017) In-Vitro and In-Vivo Evaluation of the Modulatory Effects of the Multitarget Compound ASS234 on the Monoaminergic System. Journal of Pharmacy and Pharmacology, 69, 314-324.
https://doi.org/10.1111/jphp.12697
[55]  De Jaeger, X., Cammarota, M., Prado, M.A., Izquierdo, I., Prado, V.F. and Pereira, G.S. (2013) Decreased Acetylcholine Release Delays the Consolidation of Object Recognition Memory. Behavioural Brain Research, 238, 62-68.
https://doi.org/10.1016/j.bbr.2012.10.016
[56]  Zemek, F., Drtinova, L., Nepovimova, E., Sepsova, V., Korabecny, J., Klimes, J. and Kuca, K. (2014) Outcomes of Alzheimer’s Disease Therapy with Acetylcholinesterase Inhibitors and Memantine. Expert Opinion on Drug Safety, 13, 759-774.
[57]  Lemes, L.F.N., Ramos, G.D.A., Oliveira, A.S.D., Silva, F.M.R.D., Couto, G.D.C., Boni, M.D.S., Guimarães, M.J.R., Souza, I.N.O., Bartolini, M., Andrisano, V., do Nascimento Nogueira, P.C., Silveira, E.R., Brand, G.D., Soukup, O., Korábečny, J., Romeiro, N.C., Castro, N.G., Bolognesi, M.L. and Romeiro, L.A.S. (2016) Cardanol-Derived AChE Inhibitors: Towards the Development of Dual Binding Derivatives for Alzheimer’s Disease. European Journal of Medicinal Chemistry, 108, 687-700.
https://doi.org/10.1016/j.ejmech.2015.12.024
[58]  Holzgrabe, U., Kapkova, P., Alptuzun, V., Scheiber, J. and Kugelmann, E. (2007) Targeting Acetyl Cholinesterase to Treat Neurodegeneration. Expert Opinion on Therapeutic Targets, 11, 161-179.
https://doi.org/10.1517/14728222.11.2.161
[59]  Korabecny, J., Musilek, K., Zemek, F., Horova, A., Holas, O., Nepovimova, E., Opletalova, V., Hroudova, J., Fisar, Z., Jung, Y.S. and Kuca, K. (2011) Synthesis and in Vitro Evaluation of 7-Methoxy-N-(Pent-4-Enyl)-1,2,3,4-Tetrahydroacridin-9-Amine-New Tacrine Derivate with Cholinergic Properties. Bioorganic and Medicinal Chemistry Letters, 21, 6563-6566.
https://doi.org/10.1016/j.bmcl.2011.08.042
[60]  Galimberti, D. and Scarpini, E. (2016) Old and New Acetylcholinesterase Inhibitors for Alzheimer’s Disease. Expert Opinion on Investigational Drugs, 25, 1181-1187.
https://doi.org/10.1080/13543784.2016.1216972
[61]  Giacobini, E. (2003) Cholinesterases: New Roles in Brain Function and in Alzheimer’s Disease. Neurochemical Research, 28, 515-522.
https://doi.org/10.1023/A:1022869222652
[62]  Greig, N.H., Lahiri, D.K. and Sambamurti, K. (2002) Butyrylcholinesterase: An Important New Target in Alzheimer’s Disease Therapy. International Psychogeriatrics, 14, 77-91.
https://doi.org/10.1017/S1041610203008676
[63]  Terry Jr., A.V. and Buccafusco, J.J. (2003) The Cholinergic Hypothesis of Age and Alzheimer’s Disease-Related Cognitive Deficits: Recent Challenges and Their Implications for Novel Drug Development. Journal of Pharmacology and Experimental Therapeutics, 306, 821-827.
https://doi.org/10.1124/jpet.102.041616
[64]  Bajda, M., Guzior, N., Ignasik, M. and Malawska, B. (2011) Multi-Target Directed Ligands in Alzheimer’s Disease Treatment. Current Medicinal Chemistry, 18, 4949-4975.
https://doi.org/10.2174/092986711797535245
[65]  Babkova, K., Korabecny, J., Soukup, O., Nepovimova, E., Jun, D. and Kuca, K. (2017) Prolyl Oligopeptidase and Its Role in the Organism: Attention to the Most Promising and Clinically Relevant Inhibitors. Future Medicinal Chemistry, 9, 1015-1038.
https://doi.org/10.4155/fmc-2017-0030
[66]  Cavalli, A., Bolognesi, M.L., Minarini, A., Rosini, M., Tumiatti, V., Recanatini, M. and Melchiorre, C. (2008) Multi-Target Directed Ligands to Combat Neurodegenerative Diseases. Journal of Medicinal Chemistry, 51, 347-372.
https://doi.org/10.1021/jm7009364
[67]  Wang, Y., Wang, H. and Chen, H.Z. (2016) AChE Inhibition-Based Multi-Target-Directed Ligands: A Novel Pharmacological Approach for the Symptomatic and Disease-Modifying Therapy of Alzheimer’s Disease. Current Neuropharmacology, 14, 364-375.
https://doi.org/10.2174/1570159X14666160119094820
[68]  Bolognesi, M.L., Rosini, M., Andrisano, V., Bartolini, M., Minarini, A., Tumiatti, V. and Melchiorre, C. (2009) MTDL Design Strategy in the Context of Alzheimer’s Disease: From Lipocrine to Memoquin and Beyond. Current Pharmaceutical Design, 15, 601-613.
https://doi.org/10.2174/138161209787315585
[69]  Bolognesi, M.L., Minarini, A., Rosini, M., Tumiatti, V. and Melchiorre, C. (2008) From Dual Binding Site Acetylcholinesterase Inhibitors to Multi-Target-Directed Ligands (MTDLs): A Step Forward in the Treatment of Alzheimer’s Disease. Mini-Reviews in Medicinal Chemistry, 8, 960-967.
https://doi.org/10.2174/138955708785740652
[70]  Gazova, Z., Soukup, O., Sepsova, V., Drtinova, L., Jost, P., Spilovska, K., Korabecny, J., Nepovimova, E., Fedunova, D., Horak, M., Kaniakova, M., Wang, Z.J., Hamouda, A.K. and Kuca, K. (2017) Multi-Target-Directed Therapeutic Potential of 7-Methoxytacrine-Adamantylamineheterodimers in the Alzheimer’s Disease Treatment. Biochimica et Biophysica Acta, 1863, 607-619.
https://doi.org/10.1016/j.bbadis.2016.11.020
[71]  Spilovska, K., Korabecny, J., Sepsova, V., Jun, D., Hrabinova, M., Jost, P., Muckova, L., Soukup, O., Janockova, J., Kucera, T., Dolezal, R., Mezeiova, E., Kaping, D. and Kuca, K. (2017) Novel Tacrine-Scutellarin Hybrids as Multipotent Anti-Alzheimer’s Agents: Design, Synthesis and Biological Evaluation. Molecules, 22, 1006-1027.
https://doi.org/10.3390/molecules22061006
[72]  Viegas, F.P.D., Silva, M.D.F., Rocha, M.D.D., Castelli, M.R., Riquiel, M.M., Machado, R.P., Vaz, S.M., Simões de Lima, L.M., Mancini, K.C., Marques de Oliveira, P.C., Morais, é.P., Gontijo, V.S., da Silva, F.M.R., D’Alincourt da Fonseca Peçanha, D., Castro, N.G., Neves, G.A., Giusti-Paiva, A., Vilela, F.C., Orlandi, L., Camps, I., Veloso, M.P., Leomil Coelho, L.F., Ionta, M., Ferreira-Silva, G.á., Pereira, R.M., Dardenne, L.E., Guedes, I.A., de Oliveira Carneiro Junior, W., Quaglio Bellozi, P.M., Pinheiro de Oliveira, A.C., Ferreira, F.F., Pruccoli, L., Tarozzi, A. and Viegas Jr., C. (2018) Design, Synthesis and Pharmacological Evaluation of N-Benzyl-Piperidinyl-Aryl-Acylhydrazone Derivatives as Donepezil Hybrids: Discovery of Novel Multi-Target Anti-Alzheimer Prototype Drug Candidates. European Journal of Medicinal Chemistry, 147, 48-65.
https://doi.org/10.1016/j.ejmech.2018.01.066
[73]  Zhang, W., Huang, D., Huang, M., Huang, J., Wang, D., Liu, X., Nguyen, M., Vendier, L., Mazères, S., Robert, A., Liu, Y. and Meunier, B. (2018) Preparation of New Tetradentate Copper Chelators as Potential Anti-Alzheimer Agents. ChemMedChem, 13, 684-704.
https://doi.org/10.1002/cmdc.201700734
[74]  Selkoe, D.J. (1991) Amyloid Protein and Alzheimer’s Disease. Scientific American, 265, 68-71.
https://doi.org/10.1038/scientificamerican1191-68
[75]  Vassar, R., Bennett, B.D., Babu-Khan, S., Kahn, S., Mendiaz, E.A., Denis, P., Teplow, D.B., Ross, S., Amarante, P., Loeloff, R., Luo, Y., Fisher, S., Fuller, J., Edenson, S., Lile, J., Jarosinski, M.A., Biere, A.L., Curran, E., Burgess, T., Louis, J.C., Collins, F., Treanor, J., Rogers, G. and Citron, M. (1999) β-Secretase Cleavage of Alzheimer’s Amyloid Precursor Protein by the Transmembrane Aspartic Protease BACE. Science, 286, 735-741.
https://doi.org/10.1126/science.286.5440.735
[76]  Yan, R., Bienkowski, M.J., Shuck, M.E., Miao, H., Tory, M.C., Pauley, A.M., Brashier, J.R., Stratman, N.C., Mathews, W.R., Buhl, A.E., Carter, D.B., Tomasselli, A.G., Parodi, L.A., Heinrikson, R.L. and Gurney, M.E. (1999) Membrane Anchored Aspartyl Protease with Alzheimer’s Disease β-Secretase Activity. Nature, 402, 533-537.
https://doi.org/10.1038/990107
[77]  Roberds, S.L., Anderson, J., Basi, G., Bienkowski, M.J., Branstetter, D.G., Chen, K.S., Freedman, S.B., Frigon, N.L., Games, D., Hu, K., Johnson-Wood, K., Kappenman, K.E., Kawabe, T.T., Kola, I., Kuehn, R., Lee, M., Liu, W., Motter, R., Nichols, N.F., Power, M., Robertson, D.W., Schenk, D., Schoor, M., Shopp, G.M. Shuck, M.E., Sinha, S., Svensson, K.A., Tatsuno, G., Tintrup, H., Wijsman, J., Wright, S. and McConlogue, L. (2001) BACE Knockout Mice Are Healthy Despite Lacking the Primary β-Secretase Activity in Brain: Implications for Alzheimer’s Disease Therapeutics. Human Molecular Genetics, 10, 1317-1324.
https://doi.org/10.1093/hmg/10.12.1317
[78]  Luo, Y., Bolon, B., Kahn, S., Bennett, B.D., Babu-Khan, S., Denis, P., Fan, W., Kha, H., Zhang, J., Gong, Y., Martin, L., Louis, J.C., Yan, Q., Richards, W.G., Citron, M. and Vassar, R. (2001) Mice Deficient in BACE1, the Alzheimer’s β-Secretase, Have Normal Phenotype and Abolished β-Amyloid Generation. Nature Neuroscience, 4, 231-232.
https://doi.org/10.1038/85059
[79]  Ohno, M., Chang, L., Tseng, W., Oakley, H., Citron, M., Klein, W.L., Vassar, R. and Disterhoft, J.F. (2006) Temporal Memory Deficits in Alzheimer’s Mouse Models: Rescue by Genetic Deletion of BACE1. European Journal of Neuroscience, 23, 251-260.
https://doi.org/10.1111/j.1460-9568.2005.04551.x
[80]  Ohno, M., Sametsky, E.A., Younkin, L.H., Oakley, H., Younkin, S.G., Citron, M., Vassar, R. and Disterhoft, J.F. (2004) BACE1deficiency Rescues Memory Deficits and Cholinergic Dysfunction in a Mouse Model of Alzheimer’s Disease. Neuron, 41, 27-33.
https://doi.org/10.1016/S0896-6273(03)00810-9
[81]  Michalik, L., Auwerx, J., Berger, J.P., Chatterjee, V.K., Glass, C.K., Gonzalez, F.J., Grimaldi, P.A., Kadowaki, T., Lazar, M.A., O’Rahilly, S., Palmer, C.N., Plutzky, J., Reddy, J.K., Spiegelman, B.M., Staels, B. and Wahli, W. (2006) International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 58, 726-741.
https://doi.org/10.1124/pr.58.4.5
[82]  Mandrekar-Colucci, S., Karlo, J.C. and Landreth, G.E. (2012) Mechanisms Underlying the Rapid Peroxisome Proliferator Activated Receptor-γ-Mediated Amyloid Clearance and Reversal of Cognitive Deficits in a Murine Model of Alzheimer’s Disease. The Journal of Neuroscience, 32, 10117-10128.
https://doi.org/10.1523/JNEUROSCI.5268-11.2012
[83]  Landreth, G., Jiang, Q., Mandrekar, S. and Heneka, M. (2008) PPARγ Agonists as Therapeutics for the Treatment of Alzheimer’s Disease. Neurotherapeutics, 5, 481-489.
https://doi.org/10.1016/j.nurt.2008.05.003
[84]  Craft, S. (2009) The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia: Two Roads Converged. Archives of Neurology, 66, 300-305.
https://doi.org/10.1001/archneurol.2009.27
[85]  Buse, J.B. (2007) Action to Control Cardiovascular Risk in Diabetes. The American Journal of Cardiology, 99, S21-S33.
https://doi.org/10.1016/j.amjcard.2007.03.003
[86]  Vassar, R. (2014) BACE1 Inhibitor Drugs in Clinical Trials for Alzheimer’s Disease. Alzheimer’s Research & Therapy, 6, 89-103.
https://doi.org/10.1186/s13195-014-0089-7
[87]  Luo, X. and Yan, R. (2010) Inhibition of BACE1 for Therapeutic Use in Alzheimer’s Disease. International Journal of Clinical and Experimental Pathology, 3, 618-628.
[88]  May, P.C., Willis, B.A., Lowe, S.L., Dean, R.A., Monk, S.A., Cocke, P.J., Audia, J.E., Boggs, L.N., Borders, A.R., Brier, R.A., Calligaro, D.O., Day, T.A., Ereshefsky, L., Erickson, J.A., Gevorkyan, H., Gonzales, C.R., James, D.E., Jhee, S.S., Komjathy, S.F., Li, L., Lindstrom, T.D., Mathes, B.M., Martényi, F., Sheehan, S.M., Stout, S.L., Timm, D.E., Vaught, G.M., Watson, B.M., Winneroski, L.L., Yang, Z. and Mergott, D.J. (2015) The Potent BACE1 Inhibitor LY2886721 Elicits Robust Central a Beta Pharmacodynamic Responses in Mice, Dogs, and Humans. Journal of Neuroscience, 35, 1199-1210.
https://doi.org/10.1523/JNEUROSCI.4129-14.2015
[89]  Sparve, E., Quartino, A.L., Luttgen, M., Tunblad, K., Gårdlund, A.T., Fälting, J., Alexander, R, Kågström, J., Sjödin, L., Bulgak, A., Al-Saffar, A., Bridgland-Taylor, M., Pollard, C., Swedberg, M.D., Vik, T. and Paulsson, B. (2014) Prediction and Modeling of Effects on the QTc Interval for Clinical Safety Margin Assessment Based on Single-Ascending Dose Study Data with AZD3839. Journal of Pharmacology and Experimental Therapeutics, 350, 469-478.
https://doi.org/10.1124/jpet.114.215202
[90]  Kim, H.G., Moon, M., Choi, J.G., Park, G., Kim, A.J., Hur, J., Lee, K.T. and Oh, M.S. (2014) Donepezil Inhibits the Amyloid-Beta Oligomer-Induced Microglial Activation in Vitro and in Vivo. NeuroToxicology, 40, 23-32.
https://doi.org/10.1016/j.neuro.2013.10.004
[91]  Ma, Y., Ji, J., Li, G., Yang, S. and Pan, S. (2018) Effects of Donepezil on Cognitive Functions and the Expression Level of β-Amyloid in Peripheral Blood of Patients with Alzheimer’s Disease. Experimental and Therapeutic Medicine, 15, 1875-1878.
[92]  Nagakura, A., Shitaka, Y., Yarimizu, J. and Matsuoka, N. (2013) Characterization of Cognitive Deficits in a Transgenic Mouse Model of Alzheimer’s Disease and Effects of Donepezil and Memantine. European Journal of Pharmacology, 703, 53-61.
https://doi.org/10.1016/j.ejphar.2012.12.023
[93]  Ye, C.Y., Lei, Y., Tang, X.C. and Zhang, H.Y. (2015) Donepezil Attenuates Af3-Associated Mitochondrial Dysfunction and Reduces Mitochondrial Af3 Accumulation in Vivo and in Vitro. Neuropharmacology, 95, 29-36.
https://doi.org/10.1016/j.neuropharm.2015.02.020
[94]  Bhattacharya, S., Maelicke, A. and Montag, D. (2015) Nasal Application of the Galantamine Pro-Drug Memogain Slows down Plaque Deposition and Ameliorates Behavior in 5X Familial Alzheimer’s Disease Mice. Journal of Alzheimer’s Disease, 46, 123-136.
https://doi.org/10.3233/JAD-142421
[95]  Singh, M., Kaur, M., Singh, N. and Silakari, O. (2017) Exploration of Multi-Target Potential of Chromen-4-One Based Compounds in Alzheimer’s Disease: Design, Synthesis and Biological Evaluations. Bioorganic & Medicinal Chemistry, 25, 6273-6285.
https://doi.org/10.1016/j.bmc.2017.09.012
[96]  Zueva, I.V., Semenov, V.E., Mukhamedyarov, M.A., Lushchekina, S.V., Kharlamova, A.D., Petukhova, E.O., Mikhailov, A.S., Podyachev, S.N., Saifina, L.F., Petrov, K.A., Minnekhanova, O.A., Zobov, V.V., Nikolsky, E.E., Masson, P. and Reznik, V.S. (2015) 6-Methyluracil Derivatives as Acetylcholinesterase Inhibitors for Treatment of Alzheimer’s Disease. International Journal of Risk & Safety in Medicine, 27, 69-71.
https://doi.org/10.3233/JRS-150694
[97]  Deng, M., Huang, L., Ning, B., Wang, N., Zhang, Q., Zhu, C. and Fang, Y. (2016) β-Asarone Improves Learning and Memory and Reduces Acetyl Cholinesterase and Beta-Amyloid 42 Levels in APP/PS1 Transgenic Mice by Regulating Beclin-1-Dependent Autophagy. Brain Research, 1652, 188-194.
https://doi.org/10.1016/j.brainres.2016.10.008
[98]  Panzella, L., Eidenberger, T. and Napolitano, A. (2018) Anti-Amyloid Aggregation Activity of Black Sesame Pigment: Toward a Novel Alzheimer’s Disease Preventive Agent. Molecules, 23, 676-689.
https://doi.org/10.3390/molecules23030676
[99]  Jiang, L., Huang, M., Xu, S., Wang, Y., An, P., Feng, C., Chen, X., Wei, X., Han, Y. and Wang, Q. (2016) Bis(Propyl)-Cognitin Prevents β-Amyloid-Induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway. Molecular Neurobiology, 53, 3832-3841.
https://doi.org/10.1007/s12035-015-9317-9
[100]  Chang, L., Cui, W., Yang, Y., Xu, S., Zhou, W., Fu, H., Hu, S., Mak, S., Hu, J., Wang, Q., Ma, V.P., Choi, T.C., Ma, E.D., Tao, L., Pang, Y., Rowan. M.J., Anwyl, R., Han, Y. and Wang, Q. (2015) Protection against β-Amyloid-Induced Synaptic and Memory Impairments via Altering β-Amyloid Assembly by Bis(Heptyl)-Cognitin. Scientific Reports, 5, Article No. 10256.
https://doi.org/10.1038/srep10256
[101]  Gu, X.H., Xu, L.J., Liu, Z.Q., Wei, B., Yang, Y.J., Xu, G.G., Yin, X.P. and Wang, W. (2016) The Flavonoid Baicalein Rescues Synaptic Plasticity and Memory Deficits in a Mouse Model of Alzheimer’s Disease. Behavioural Brain Research, 15, 309-321.
https://doi.org/10.1016/j.bbr.2016.05.052
[102]  Tian, T., Bai, D., Li, W., Huang, G.W. and Liu, H. (2016) Effects of Folic Acid on Secretases Involved in a β Deposition in APP/PS1 Mice. Nutrients, 8, 556-567.
https://doi.org/10.3390/nu8090556
[103]  Nishiyama, S., Ohba, H., Kanazawa, M., Kakiuchi, T. and Tsukada, H. (2015) Comparing α7 Nicotinic Acetylcholine Receptor Binding, Amyloid-β Deposition, and Mitochondria Complex-I Function in Living Brain: A PET Study in Aged Monkeys. Synapse, 69, 475-483.
https://doi.org/10.1002/syn.21842
[104]  Nakaizumi, K., Ouchi, Y., Terada, T., Yoshikawa, E., Kakimoto, A., Isobe, T., Bunai, T., Yokokura, M., Suzuki, K. and Magata, Y. (2018) In Vivo Depiction of α7 Nicotinic Receptor Loss for Cognitive Decline in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 61, 1355-1365.
https://doi.org/10.3233/JAD-170591
[105]  Panek, D., Więckowska, A., Pasieka, A., Godyń, J., Jończyk, J., Bajda, M., Knez, D., Gobec, S. and Malawska, B. (2018) Design, Synthesis, and Biological Evaluation of 2-(Benzylamino-2-Hydroxyalkyl) Isoindosline-1,3-Diones Derivatives as Potential Disease-Modifying Multifunctional Anti-Alzheimer Agents. Molecules, 23, 347-357.
https://doi.org/10.3390/molecules23020347
[106]  Kidana, K., Tatebe, T., Ito, K., Hara, N., Kakita, A., Saito, T., Takatori, S., Ouchi, Y., Ikeuchi, T., Makino, M., Saido, T.C., Akishita, M., Iwatsubo, T., Hori, Y. and Tomita, T. (2018) Loss of Kallikrein-Related Peptidase 7 Exacerbates Amyloid Pathology in Alzheimer’s Disease Model Mice. EMBO Molecular Medicine, 10, 8184-8197.
https://doi.org/10.15252/emmm.201708184
[107]  Kumar, R.S., Almansour, A.I., Arumugam, N., Althomili, D.M.Q., Altaf, M., Basiri, A.D.K. and Sai Manohar, T.S.V. (2018) Ionic Liquid-Enabled Synthesis, Cholinesterase Inhibitory Activity, and Molecular Docking Study of Highly Functionalized Tetrasubstituted Pyrrolidines. Bioorganic Chemistry, 77, 263-268.
https://doi.org/10.1016/j.bioorg.2018.01.019
[108]  Pitt, J., Wilcox, K.C., Tortelli, V., Diniz, L.P., Oliveira, M.S., Dobbins, C., Yu, X.W., Nandamuri, S., Gomes, F.C.A., DiNunno, N., Viola, K.L., De Felice, F.G., Ferreira, S.T. and Klein, W.L. (2017) Neuroprotective Astrocyte-Derived Insulin/Insulin-Like Growth Factor 1 Stimulates Endocytic Processing and Extracellular Release of Neuron-Bound Aβ Oligomers. Molecular Biology of the Cell, 28, 2623-2636.
https://doi.org/10.1091/mbc.e17-06-0416
[109]  Um, J.W., Kaufman, A.C., Kostylev, M., Heiss, J.K., Stagi, M., Takahashi, H., Kerrisk, M.E., Vortmeyer, A., Wisniewski, T., Koleske, A.J., Gunther, E.C., Nygaard, H.B. and Strittmatter, S.M. (2013) Metabotropic Glutamate Receptor 5 Is a Coreceptor for Alzheimer Aβ Oligomer Bound to Cellular Prion Protein. Neuron, 79, 887-902.
https://doi.org/10.1016/j.neuron.2013.06.036
[110]  Haas, L.T., Kostylev, M.A. and Strittmatter, S.M. (2014) Therapeutic Molecules and Endogenous Ligands Regulate the Interaction between Brain Cellular Prion Protein (PrPC) and Metabotropic Glutamate Receptor 5 (mGluR5). The Journal of Biological Chemistry, 289, 8460-8477.
https://doi.org/10.1074/jbc.M114.584342
[111]  Ostapchenko, V.G., Beraldo, F.H., Mohammad, A.H., Xie, Y.F., Hirata, P.H., Magalhaes, A.C., Lamour, G., Li, H., Maciejewski, A., Belrose, J.C., Teixeira, B.L., Fahnestock, M., Ferreira, S.T., Cashman, N.R., Hajj, G.N., Jackson, M.F., Choy, W.Y., MacDonald, J.F., Martins, V.R., Prado, V.F., Prado, M.A. (2013) The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-β Oligomer Toxicity. Journal of Neuroscience, 33, 16552-16564.
https://doi.org/10.1523/JNEUROSCI.3214-13.2013
[112]  Maciejewski, A., Ostapchenko, V.G., Beraldo, F.H., Prado, V.F., Prado, M.A. and Choy, W.Y. (2016) Domains of STIP1 Responsible for Regulating PrPC-Dependent Amyloid-β Oligomer Toxicity. Biochemical Journal, 473, 2119-2130.
https://doi.org/10.1042/BCJ20160087
[113]  Dai, X., Chang, P., Li, X., Gao, Z. and Sun, Y. (2018) The Inhibitory Effect of Chitosan Oligosaccharides on β-Site Amyloid Precursor Protein Cleaving Enzyme 1 (BACE1) in HEK293 APPswe Cells. Neuroscience Letters, 665, 80-85.
https://doi.org/10.1016/j.neulet.2017.11.052
[114]  Wang, S., Liu, D., Zhang, L., Ji, M., Zhang, Y., Dong, Q., Liu, S., Xie, X. and Liu, R. (2017) A Vaccine with Aβ Oligomer-Specific Mimotope Attenuates Cognitive Deficits and Brain Pathologies in Transgenic Mice with Alzheimer’s Disease. Alzheimer’s Research & Therapy, 9, 41-55.
https://doi.org/10.1186/s13195-017-0267-5
[115]  Giannoni, P., Gaven, F., de Bundel, D., Baranger, K., Marchetti-Gauthier, E., Roman, F.S., Valjent, E., Marin, P., Bockaert, J., Rivera, S. and Claeysen, S. (2013) Early Administration of RS 67333, a Specific 5-HT4 Receptor Agonist, Prevents Amyloidogenesis and Behavioral Deficits in the 5XFAD Mouse Model of Alzheimer’s Disease. Frontiers in Aging Neuroscience, 5, 96-108.
https://doi.org/10.3389/fnagi.2013.00096
[116]  Jung, H.A., Ali, M.Y., Jung, H.J., Jeong, H.O., Chung, H.Y. and Choi, J.S. (2016) Inhibitory Activities of Major Anthraquinones and Other Constituents from Cassia obtusifolia against β-Secretase and Cholinesterases. Journal of Ethnopharmacology, 191, 152-160.
https://doi.org/10.1016/j.jep.2016.06.037
[117]  Kim, D.H., Yoon, B.H., Kim, Y.W., Lee, S., Shin, B.Y., Jung, J.W. and Ryu, J.H. (2007) The Seed Extract of Cassia obtusifolia Ameliorates Learning and Memory Impairments Induced by Scopolamine or Transient Cerebral Hypoperfusion in Mice. Journal of Pharmacological Sciences, 105, 82-93.
https://doi.org/10.1254/jphs.FP0061565
[118]  Yi, J.H., Park, H.J., Lee, S., Jung, J.W., Kim, B.C., Lee, Y.C., Ryu, J.H. and Kim, D.H. (2016) Cassia obtusifolia Seed Ameliorates Amyloid β-Induced Synaptic Dysfunction through Anti-Inflammatory and Akt/GSK-3β Pathways. Journal of Ethnopharmacology, 178, 50-57.
https://doi.org/10.1016/j.jep.2015.12.007
[119]  Xu, S., Nigam, S.M. and Brodin, L. (2018) Overexpression of SNX3 Decreases Amyloid-β Peptide Production by Reducing Internalization of Amyloid Precursor Protein. Neurodegenerative Diseases, 18, 26-37.
https://doi.org/10.1159/000486199
[120]  Esmaeili, M.H., Bahari, B. and Salari, A.A. (2018) ATP-Sensitive Potassium-Channel Inhibitor Glibenclamide Attenuates HPA Axis Hyperactivity, Depression- and Anxiety-Related Symptoms in a Rat Model of Alzheimer’s Disease. Brain Research Bulletin, 137, 265-276.
https://doi.org/10.1016/j.brainresbull.2018.01.001
[121]  Ge, X., Yang, Y., Sun, Y., Cao, W. and Ding, F. (2018) Islet Amyloid Polypeptide Promotes Amyloid-Beta Aggregation by Binding-Induced Helix-Unfolding of the Amyloidogenic Core. ACS Chemical Neuroscience, 396-405.
https://doi.org/10.1021/acschemneuro.7b00396
[122]  Hall, H., Iulita, M.F., Gubert, P., Aguilar, L., Ducatenzeiler, A., Fisher, A. and Cuello, A.C. (2018) AF710B, an M1/Sigma-1 Receptor Agonist with Long-Lasting Disease-Modifying Properties in a Transgenic Rat Model of Alzheimer’s Disease. Alzheimer’s & Dementia, 14, 811-823.
[123]  Wang, J., Wang, C., Wu, Z., Li, X., Xu, S., Liu, J., Lan, Q., Zhu, Z. and Xu, J. (2018) Design, Synthesis, Biological Evaluation, and Docking Study of 4-Isochromanonehybrids Bearing N-Benzyl Pyridinium Moiety as Dual Binding Site Acetylcholinesterase Inhibitors (Part II). Chemical Biology & Drug Design, 91, 756-762.
https://doi.org/10.1111/cbdd.13136
[124]  Fisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D.A., Bar-Ner, N., Natan, N., Brandeis, R., Elkon, H., Nahum, V., Gershonov, E., LaFerla, F.M. and Medeiros, R. (2016) AF710B, a Novel M1/σ1 Agonist with Therapeutic Efficacy in Animal Models of Alzheimer’s Disease. Neuro-Degenerative Diseases, 16, 95-110.
https://doi.org/10.1159/000440864
[125]  Clemens, V., Regen, F., Le Bret, N., Heuser, I. and Hellmann-Regen, J. (2018) Retinoic Acid Enhances Apolipoprotein E Synthesis in Human Macrophages. Journal of Alzheimer’s Disease, 61, 1295-1300.
https://doi.org/10.3233/JAD-170823
[126]  Sanz Muñoz, S., Li, H., Ruberu, K., Chu, Q., Saghatelian, A., Ooi, L. and Garner, B. (2018) The Serine Protease HtrA1 Contributes to the Formation of an Extracellular 25-kDa Apolipoprotein E Fragment That Stimulates Neuritogenesis. The Journal of Biological Chemistry, 293, 4071-4084.
https://doi.org/10.1074/jbc.RA117.001278
[127]  De Leon, M.J., Pirraglia, E., Osorio, R.S., Glodzik, L., Saint-Louis, L., Kim, H.J., Fortea, J., Fossati, S., Laska, E., Siegel, C., Butler, T., Li, Y., Rusinek, H., Zetterberg, H. and Blennow, K. (2018) The Nonlinear Relationship between Cerebrospinal Fluid Aβ42 and Tau in Preclinical Alzheimer’s Disease. PLoS ONE, 13, 0191240.
https://doi.org/10.1371/journal.pone.0191240
[128]  Chen, Y., Zhu, J., Mo,J., Yang, H., Jiang, X., Lin, H., Gu, K., Pei, Y., Wu, L., Tan, R., Hou, J., Chen, J., Lv, Y., Bian Y. and Sun, H. (2018) Synthesis and Bioevaluation of New Tacrine-Cinnamic Acid Hybrids as Cholinesterase Inhibitors against Alzheimer’s Disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 33, 290-302.
https://doi.org/10.1080/14756366.2017.1412314
[129]  Shih, J.C., Chen, K. and Ridd, M.J. (1999) Monoamine Oxidase: From Genes to Behavior. Annual Review of Neuroscience, 22, 197-217.
https://doi.org/10.1146/annurev.neuro.22.1.197
[130]  Mellick, G.D., Buchanan, D.D., McCann, S.J., James, K.M., Johnson, A.G., Davis, D.R., Liyou, N., Chan, D. and Le Couteur, D.G. (1999) Variations in the Monoamine Oxidase B (MAOB) Gene Are Associated with Parkinson’s Disease. Movement Disorders, 14, 219-224.
https://doi.org/10.1002/1531-8257(199903)14:2<219::AID-MDS1003>3.0.CO;2-9
[131]  Edmondson, D.E., Mattevi, A., Binda, C., Li, M., Hubálek, F. (2004) Structure and Mechanism of Monoamine Oxidase. Current Medicinal Chemistry, 11, 1983-1993.
https://doi.org/10.2174/0929867043364784
[132]  Wouters, J. (1998) Structural Aspects of Monoamine Oxidase and Its Reversible Inhibition. Current Medicinal Chemistry, 5, 137-162.
[133]  Youdim, M.B., Edmondson, D. and Tipton, K.F. (2006) The Therapeutic Potential of Monoamine Oxidase Inhibitors. Nature Reviews Neuroscience, 7, 295-309.
https://doi.org/10.1038/nrn1883
[134]  Adolfsson, R., Gottfries, C.G., Oreland, L., Wiberg, A. and Winblad, B. (1980) Increased Activity of Brain and Platelet Monoamine Oxidase in Dementia of Alzheimer Type. Life Sciences, 27, 1029-1034.
https://doi.org/10.1016/0024-3205(80)90025-9
[135]  Riederer, P., Danielczyk, W. and Grünblatt, E. (2004) Monoamine Oxidase-B Inhibition in Alzheimer’s Disease. Neurotoxicology, 25, 271-277.
https://doi.org/10.1016/S0161-813X(03)00106-2
[136]  Chimenti, F., Secci, D., Bolasco, A., Chimenti, P., Bizzarri, B., Granese, A., Carradori, S., Yáñez, M., Orallo, F., Ortuso, F. and Alcaro, S. (2009) Synthesis, Molecular Modeling, and Selective Inhibitory Activity against Human Monoamine Oxidases of 3-Carboxamido-7-Substituted Coumarins. Journal of Medicinal Chemistry, 52, 1935-1942.
https://doi.org/10.1021/jm801496u
[137]  Matos, M.J., Terán, C., Pérez-Castillo, Y., Uriarte, E., Santana, L. and Viña, D. (2011) Synthesis and Study of a Series of 3-Arylcoumarins as Potent and Selective Monoamine Oxidase B Inhibitors. Journal of Medicinal Chemistry, 54, 7127-7137.
https://doi.org/10.1021/jm200716y
[138]  Bar-Am, O., Amit, T., Weinreb, O., Youdim, M.B. and Mandel, S. (2010) Propargylamine Containing Compounds as Modulators of Proteolytic Cleavage of Amyloid-Beta Protein Precursor: Involvement of MAPK and PKC Activation. Journal of Alzheimer’s Disease, 21, 361-371.
https://doi.org/10.3233/JAD-2010-100150
[139]  Lee, H.J., Korshavn, K.J., Kochi, A., Derrick, J.S., Lim, M.H. (2014) Cholesterol and Metal Ions in Alzheimer’s Disease. Chemical Society Reviews, 43, 6672-6682.
https://doi.org/10.1039/C4CS00005F
[140]  Molina-Holgado, F., Hider, R.C., Gaeta, A., Williams, R. and Francis, P. (2007) Metals Ions and Neurodegeneration. BioMetals, 20, 639-654.
https://doi.org/10.1007/s10534-006-9033-z
[141]  Syme, C.D., Nadal, R.C., Rigby, S.E.J. and Viles, J.H. (2004) Copper Binding to the Amyloid-β(Aβ) Peptide Associated with Alzheimer’s Disease. Journal of Biological Chemistry, 279, 18169-18177.
https://doi.org/10.1074/jbc.M313572200
[142]  Hureau, C. and Faller, P. (2009) A Beta-Mediated ROS Production by Cu Ions: Structural Insights, Mechanisms and Relevance to Alzheimer’s Disease. Biochimie, 91, 1212-1217.
https://doi.org/10.1016/j.biochi.2009.03.013
[143]  Himes, R.A., Park, G.Y., Siluvai, G.S., Blackburn, N.J. and Karlin, K.D. (2008) Structural Studies of Copper(I) Complexes of Amyloid-β Peptide Fragments: Formation of Two Coordinate Bis(Histidine) Complexes. Angewandte Chemie International Edition, 47, 9084-9087.
https://doi.org/10.1002/anie.200803908
[144]  Hindo, S.S., Mancino, A.M., Braymer, J.J., Liu, Y., Vivekanandan, S., Ramamoorthy, A. and Lim, M.H. (2009) Small Molecule Modulators of Copper-Induced A Beta Aggregation. Journal of the American Chemical Society, 131, 16663-16665.
https://doi.org/10.1021/ja907045h
[145]  Rodriguez-Rodriguez, C., Telpoukhovskaia, M. and Orvig, C. (2012) The Art of Building Multifunctional Metal-Binding Agents from Basic Molecular Scaffolds for the Potential Application in Neurodegenerative Diseases. Coordination Chemistry Reviews, 256, 2308-2332.
https://doi.org/10.1016/j.ccr.2012.03.008
[146]  Pratico, D. (2008) Oxidative Stress Hypothesis in Alzheimer’s Disease: A Reappraisal. Trends in Pharmacological Sciences, 29, 609-615.
https://doi.org/10.1016/j.tips.2008.09.001
[147]  Lee, H.P., Zhu, X., Casadesus, G., Castellani, R.J., Nunomura, A., Smith, M.A., Lee, H.G. and Perry, G. (2010) Antioxidant Approaches for the Treatment of Alzheimer’s Disease. Expert Review of Neurotherapuetics, 10, 1201-1208.
https://doi.org/10.1586/ern.10.74
[148]  Dumont, M. and Beal, M.F. (2011) Neuroprotective Strategies Involving ROS in Alzheimer Disease. Free Radical Biology and Medicine, 51, 1014-1026.
https://doi.org/10.1016/j.freeradbiomed.2010.11.026
[149]  Vilella, A., Belletti, D., Sauer, A.K., Hagmeyer, S., Sarowar, T., Masoni, M., Stasiak, N., Mulvihill, J.J.E., Ruozi, B., Forni, F., Vandelli, M.A., Tosi, G., Zoli, M. and Grabrucker, A.M. (2017) Reduced Plaque Size and Inflammation in the APP23 Mouse Model for Alzheimer’s Disease after Chronic Application of Polymeric Nanoparticles for CNS Targeted Zinc Delivery. Journal of Trace Elements in Medicine and Biology, 49, 210-221.
https://doi.org/10.1016/j.jtemb.2017.12.006
[150]  Zhang, L., Reyes, A. and Wang, X. (2018) The Role of Mitochondria-Targeted Antioxidant MitoQ in Neurodegenerative Disease. Molecular and Cellular Therapies, 6, 1-12.
https://doi.org/10.26781/2052-8426-2018-01
[151]  Mcmanus, M.J., Murphy, M.P. and Franklin, J.L. (2011) The Mitochondria-Targeted Antioxidant MitoQ Prevents Loss of Spatial Memory Retention and Early Neuropathology in a Transgenic Mouse Model of Alzheimer’s Disease. The Journal of Neuroscience, 31, 15703-15715.
https://doi.org/10.1523/JNEUROSCI.0552-11.2011
[152]  Zhang, C., Zhou, Q., Wu, X., Huang, Y., Zhou, J., Lai, Z., Wu, Y. and Luo, H. (2018) Discovery of Novel PDE9A Inhibitors with Antioxidant Activities for Treatment of Alzheimer’s Disease. Journal of Enzyme Inhibition and Medicinal Chemistry, 33, 260-270.
https://doi.org/10.1080/14756366.2017.1412315
[153]  Diniz, L.P., Tortelli, V., Matias, I., Morgado, J., Bérgamo Araujo, A.P., Melo, H.M., Seixas da Silva, G.S., Alves-Leon, S.V., de Souza, J.M., Ferreira, S.T., De Felice, F.G. and Gomes, F.C.A. (2017) Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer’s Disease Model. Journal of Neurosciences, 37, 6797-6809.
https://doi.org/10.1523/JNEUROSCI.3351-16.2017
[154]  Yu, L., Liu, Y., Jin, Y., Cao, X., Chen, J., Jin, J., Gu, Y., Bao, X., Ren, Z., Xu, Y. and Zhu, X. (2018) Lentivirus-Mediated HDAC3 Inhibition Attenuates Oxidative Stress in APPswe/PS1dE9 Mice. Journal of Alzheimer’s Disease, 61, 1411-1424.
https://doi.org/10.3233/JAD-170844
[155]  Goldberg, J., Currais, A., Prior, M., Fischer, W., Chiruta, C., Ratliff, E., Daugherty, D., Dargusch, R., Finley, K., Esparza-Moltó, P.B., Cuezva, J.M., Maher, P., Petrascheck, M. and Schubert, D. (2018) The Mitochondrial ATP Synthase Is a Shared Drug Target Foraging and Dementia. Aging Cell, 17, 12715-12728.
https://doi.org/10.1111/acel.12715
[156]  Xu, Y.X., Wang, H., Li, X.K., Dong, S.N., Liu, W.W., Gong, Q., Wang, T.D., Tang, Y., Zhu, J., Li, J., Zhang, H.Y. and Mao, F. (2018) Discovery of Novel Propargylamine-Modified 4-Aminoalkyl Imidazole Substituted Pyrimidinylthiourea Derivatives as Multifunctional Agents for the Treatment of Alzheimer’s Disease. European Journal of Medicinal Chemistry, 143, 33-47.
https://doi.org/10.1016/j.ejmech.2017.08.025
[157]  Kumar, B., Sheetal Mantha, A.K. and Kumar, V. (2018) Synthesis, Biological Evaluation and Molecular Modeling Studies of Phenyl-/Benzhydrylpiperazine Derivatives as Potential MAO Inhibitors. Bioorganic Chemistry, 77, 252-262.
https://doi.org/10.1016/j.bioorg.2018.01.020
[158]  Birnbaum, J.H., Wanner, D., Gietl, A.F., Saake, A., Kundig, T.M., Hock, C., Nitsch, R.M. and Tackenberg, C. (2018) Oxidative Stress and Altered Mitochondrial Protein Expression in the Absence of Amyloid-β and Tau Pathology in iPSC-Derived Neurons from Sporadic Alzheimer’s Disease Patients. Stem Cell Research, 27, 121-130.
https://doi.org/10.1016/j.scr.2018.01.019
[159]  Delrieu, J., Ousset, P.J., Voisin, T. and Vellas, B. (2014) Amyloid Beta Peptide Immunotherapy in Alzheimer Disease. Revista de Neurologia, 170, 739-748.
https://doi.org/10.1016/j.neurol.2014.10.003
[160]  Gibbons, G.S., Banks, R.A., Kim, B., Changolkar, L., Riddle, D.M., Leight, S.N., Irwin, D.J., Trojanowski, J.Q. and Lee, V.M.Y. (2018) Detection of Alzheimer Disease (AD)-Specific Tau Pathology in AD and NonAD Tauopathies by Immunohistochemistry with Novel Conformation-Selective Tau Antibodies. Journal of Neuropathology and Experimental Neurology, 77, 216-228.
https://doi.org/10.1093/jnen/nly010
[161]  Lo Cascio, F. and Kayed, R. (2018) Azure C Targets and Modulates Toxic Tau Oligomers. ACS Chemical Neuroscience, 9, 1317-1326.
https://doi.org/10.1021/acschemneuro.7b00501
[162]  Tiernan, C.T., Mufson, E.J., Kanaan, N.M. and Counts, S.E. (2018) Tau Oligomer Pathology in Nucleus Basalis Neurons during the Progression of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 77, 246-259.
https://doi.org/10.1093/jnen/nlx120
[163]  Yang, C.C., Chiu, M.J., Chen, T.F., Chang, H.L., Liu, B.H. and Yang, S.Y. (2018) Assay of Plasma Phosphorylated Tau Protein (Threonine 181) and Total Tau Protein in Early-Stage Alzheimer’s Disease. Journal of Alzheimer’s Disease, 61, 1323-1332.
https://doi.org/10.3233/JAD-170810
[164]  Jung, H.A., Karki, S., Kim, J.H. and Choi, J.S. (2015) BACEl and Cholinesterase Inhibitory Activities of Nelumbo nucifera Embryos. Archives of Pharmacal Research, 38, 1178-1187.
https://doi.org/10.1007/s12272-014-0492-4
[165]  Bhakta, H.K., Park, C.H., Yokozawa, T., Min, B.S., Jung, H.A. and Choi, J.S. (2016) Kinetics and Molecular Docking Studies of Loganin, Morroniside and 7-O-Galloyl-D-Sedoheptulose Derived from Corni fructus as Cholinesterase and P-Secretase 1 Inhibitors. Archives of Pharmacal Research, 39, 794-805.
https://doi.org/10.1007/s12272-016-0745-5
[166]  Choi, R.J., Roy, A., Jung, H.J., Ali, M.Y., Min, B.S., Park, C.H., Yokozawa, T., Fan, T.P., Choi, J.S. and Jung, H.A. (2016) BACEl Molecular Docking and Anti-Alzheimer’s Disease Activities of Ginsenosides. Journal of Ethnopharmacology, 190, 219-230.
https://doi.org/10.1016/j.jep.2016.06.013
[167]  Liu, F., Dong, B., Yang, X., Yang, Y., Zhang, J., Jin, D.Q., Ohizumi, Y., Lee, D., Xu, J. and Guo, Y. (2018) NO Inhibitors Function as Potential Anti-Neuroinflammatory Agents for AD from the Flowers of Inula japonica. Bioorganic Chemistry, 77, 168-175.
https://doi.org/10.1016/j.bioorg.2018.01.009
[168]  Chen, C., Li, X., Gao, P., Tu, Y., Zhao, M., Li, J., Zhang, S. and Liang, H. (2015) Baicalin Attenuates Alzheimer-Like Pathological Changes and Memory Deficits Induced by Amyloid β1-42 Protein. Metabolic Brain Disease, 30, 537-544.
https://doi.org/10.1007/s11011-014-9601-9
[169]  Van Gijsel-Bonnello, M., Baranger, K., Benech, P., Rivera, S., Khrestchatisky, M., de Reggi, M. and Gharib, B. (2017) Metabolic Changes and Inflammation in Cultured Astrocytes from the 5xFAD Mouse Model of Alzheimer’s Disease: Alleviation by Pantethine. PLoS ONE, 13, e0194586.
https://doi.org/10.1371/journal.pone.0175369
[170]  Morello, M., Landel, V., Lacassagne, E., Baranger, K., Annweiler, C., Féron, F. and Millet, P. (2018) Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease. Molecular Neurobiology, 55, 6463-6479.
https://doi.org/10.1007/s12035-017-0839-1
[171]  Hersh, D.S., Anastasiadis, P., Mohammadabadi, A., Nguyen, B.A., Guo, S., Winkles, J.A., Kim, A.J., Gullapalli, R., Keller, A., Frenkel, V. and Woodworth, G.F. (2018) MR-Guided Transcranial Focused Ultrasound Safely Enhances Interstitial Dispersion of Large Polymeric Nanoparticles in the Living Brain. PLoS ONE, 13, e0192240.
https://doi.org/10.1371/journal.pone.0192240
[172]  Nuovo, G., Amann, V., Williams, J., Vandiver, P., Quinonez, M., Fadda, P., Paniccia, B., Mezache, L. and Mikhail, A. (2018) Increased Expression of Importin-β, Exportin-5 and Nuclear Transportable Proteins in Alzheimer’s Disease Aids Anatomic Pathologists in Its Diagnosis. Annals of Diagnostic Pathology, 32, 10-16.
https://doi.org/10.1016/j.anndiagpath.2017.08.003
[173]  González-Ramírez, M., Gavilán, J., Silva-Grecchi, T., Cajas-Madriaga, D., Triviño, S., Becerra, J., Saez-Orellana, F., Pérez, C. and Fuentealba, J. (2018) A Natural Benzofuran from the Patagonic Aleurodiscus Vitellinus Fungus Has Potent Neuroprotective Properties on a Cellular Model of Amyloid-β Peptide Toxicity. Journal of Alzheimer’s Disease, 61, 1463-1475.
https://doi.org/10.3233/JAD-170958
[174]  Paley, E.L., Merkulova-Rainon, T., Faynboym, A., Shestopalov, V.I. and Aksenoff, I. (2018) Geographical Distribution and Diversity of Gut Microbial NADH: Ubiquinone Oxidoreductase Sequence Associated with Alzheimer’s Disease. Journal of Alzheimer’s Disease, 61, 1531-1540.
https://doi.org/10.3233/JAD-170764
[175]  Shen, Y., Tian, M., Zheng, Y., Gong, F., Fu, A.K.Y. and Ip, N.Y. (2016) Stimulation of the Hippocampal POMC/MC4R Circuit Alleviates Synaptic Plasticity Impairment in an Alzheimer’s Disease Model. Cell Reports, 17, 1819-1831.
https://doi.org/10.1016/j.celrep.2016.10.043
[176]  Kokras, N., Stamouli, E., Sotiropoulos, I., Katirtzoglou, E.A., Siarkos, K.T., Dalagiorgou, G., Alexandraki, K.I., Coulocheri, S., Piperi, C. and Politis, A.M. (2018) Acetyl Cholinesterase Inhibitors and Cell-Derived Peripheral Inflammatory Cytokines in Early Stages of Alzheimer’s Disease. Journal of Clinical Psychopharmacology, 38, 138-143.
https://doi.org/10.1097/JCP.0000000000000840
[177]  Wang, S., Zhang, X., Zhai, L., Sheng, X., Zheng, W., Chu, H. and Zhang, G. (2018) Atorvastatin Attenuates Cognitive Deficits and Neuroinflammation Induced by Aβ1-42 Involving Modulation of TLR4/TRAF6/NF-κB Pathway. Journal of Molecular Neuroscience, 64, 363-373.
https://doi.org/10.1007/s12031-018-1032-3
[178]  Liu, J. and Wang, M. (2018) Carvedilol Protection against Endogenous Aβ-Induced Neurotoxicity in N2a Cells. Cell Stress Chaperones, 23, 695-702.
https://doi.org/10.1007/s12192-018-0881-6
[179]  Hu, X., Song, C., Fang, M. and Li, C. (2018) Simvastatin Inhibits the Apoptosis of Hippocampal Cells in a Mouse Model of Alzheimer’s Disease. Experimental and Therapeutic Medicine, 15, 1795-1802.
https://doi.org/10.3892/etm.2018.6057
[180]  Batista, A.F., Forny-Germano, L., Clarke, J.R., Lyra, E., Silva, N.M., Brito-Moreira, J., Boehnke, S.E., Winterborn, A., Coe, B.C., Lablans, A., Vital, J.F., Marques, S.A., Martinez, A.M.B., Gralle, M., Holscher, C., Klein, W.L., Houzel, J.C., Ferreira, S.T., Munoz, D.P. and De Felice, F.G. (2018) The Diabetes Drug Liraglutide Reverses Cognitive Impairment in Mice and Attenuates Insulin Receptor and Synaptic Pathology in a Non-Human Primate Model of Alzheimer’s Disease. Journal of Pathology, 245, 85-100.
https://doi.org/10.1002/path.5056
[181]  Fu, A.K., Hung, K.W., Huang, H., Gu, S., Shen, Y., Cheng, E.Y., Ip, F.C., Huang, X., Fu, W.Y. and Ip, N.Y. (2014) Blockade of EphA4 Signaling Ameliorates Hippocampal Synaptic Dysfunctions in Mouse Models of Alzheimer’s Disease. Proceedings of the National Academy of Sciences of the United States of America, 111, 9959-9964.
https://doi.org/10.1073/pnas.1405803111
[182]  Zimmermann, G.R., Lehár, J. and Keith, C.T. (2007) Multi-Target Therapeutics: When the Whole Is Greater than the Sum of the Parts. Drug Discovery Today, 12, 34-42.
https://doi.org/10.1016/j.drudis.2006.11.008
[183]  Millan, M.J. (2006) Multi-Target Strategies for the Improved Treatment of Depressive States: Conceptual Foundations and Neuronal Substrates, Drug Discovery and Therapeutic Application. Pharmacology and Therapeutics, 110, 135-370.
https://doi.org/10.1016/j.pharmthera.2005.11.006
[184]  Zhu, Y., Xiao, K., Ma, L., Xiong, B., Fu, Y., Yu, H., Wang, W., Wang, X., Hu, D., Peng, H., Li, J., Gong, Q., Chai, Q., Tang, X., Zhang, H., Li, J. and Shen, J. (2009) Design, Synthesis and Biological Evaluation of Novel Dual Inhibitors of Acetylcholinesterase and Beta-Secretase. Bioorganic and Medicinal Chemistry, 17, 1600-1613.
https://doi.org/10.1016/j.bmc.2008.12.067
[185]  Rosini, M., Andrisano, V., Bartolini, M., Bolognesi, M.L., Hrelia, P., Minarini, A., Tarozzi, A. and Melchiorre, C. (2005) Rational Approach to Discover Multipotent Anti-Alzheimer Drugs. Journal of Medicinal Chemistry, 48, 360-363.
https://doi.org/10.1021/jm049112h
[186]  Liu, H., Liang, F., Su, W., Wang, N., Lv, M., Li, P., Pei, Z., Zhang, Y., Xie, X.Q., Wang, L. and Wang, Y. (2013) Lifespan Extension by n-Butanol Extract from Seed of Platycladus orientalis in Caenorhabditis elegans. Journal of Ethnopharmacology, 147, 366-372.
https://doi.org/10.1016/j.jep.2013.03.019
[187]  Chu, H., Zhang, A., Han, Y., Lu, S., Kong, L., Han, J., Liu, Z., Sun, H. and Wang, X. (2016) Metabolomics Approach to Explore the Effects of Kai-Xin-San on Alzheimer’s Disease Using UPLC/ESI-Q-TOF Mass Spectrometry. Journal of Chromatography B, 1015-1016, 50-61.
https://doi.org/10.1016/j.jchromb.2016.02.007
[188]  Zhang, A., Sun, H. and Wang, X. (2018) Mass Spectrometry-Driven Drug Discovery for Development of Herbal Medicine. Mass Spectrometry Reviews, 37, 307-320.
https://doi.org/10.1002/mas.21529
[189]  Wang, L., Ma, C., Wipf, P., Liu, H., Su, W. and Xie, X.Q. (2013) Target Hunter: An in Silico Target Identification Tool for Predicting Therapeutic Potential of Small Organic Molecules Based on Chemogenomic Database. AAPS Journal, 15, 395-406.
https://doi.org/10.1208/s12248-012-9449-z
[190]  Liu, H., Wang, L., Lv, M., Pei, R., Li, P., Pei, Z., Wang, Y., Su, W. and Xie, X.Q. (2014) AlzPlatform: An Alzheimer’s Disease Domain-Specific Chemogenomics Knowledgebase for Polypharmacology and Target Identification Research. Journal of Cheminformatics, 54, 1050-1060.
[191]  Chu, H., Zhang, A., Han, Y. and Wang, X. (2015) Metabolomics and Its Potential in Drug Discovery and Development from TCM. World Journal of Traditional Chinese Medicine, 1, 26-32.
https://doi.org/10.15806/j.issn.2311-8571.2015.0022
[192]  Zhang, A., Sun, H., Qiu, S. and Wang, X. (2013) Advancing Drug Discovery and Development from Active Constituents of Yinchenhao Tang: A Famous Traditional Chinese Medicine Formula. Journal of Evidence-Based Complementary Alternative Medicine, 2013, Article ID: 257909.
https://doi.org/10.1155/2013/257909
[193]  Wang, X., Zhang, A., Sun, H., Han, Y. and Yan, G. (2016) Discovery and Development of Innovative Drug from Traditional Medicine by Integrated Chinmedomics Strategies in the Post-Genomic Era. Trends in Analytical Chemistry, 76, 86-94.
https://doi.org/10.1016/j.trac.2015.11.010
[194]  Zhang, A., Sun, H. and Wang, X. (2014) Potentiating Therapeutic Effects by Enhancing Synergism Based on Active Constituents from Traditional Medicine. Phototherapy Research, 28, 526-533.
https://doi.org/10.1002/ptr.5032
[195]  Wang, X., Zhang, A., Yan, G., Han Y. and Sun, H.U. (2014) HPLC-MS for the Analytical Characterization of Traditional Chinese Medicines. Trends in Analytical Chemistry, 63, 180-187.
https://doi.org/10.1016/j.trac.2014.05.013
[196]  Ha, G.T., Wong, R.K. and Zhang, Y. (2011) Huperzine a as Potential Treatment of Alzheimer’s Disease: An Assessment on Chemistry, Pharmacology, and Clinical Studies. Chemistry and Biodiversity, 8, 1189-1204.
https://doi.org/10.1002/cbdv.201000269
[197]  Liu, Q., Zhang, A., Wang, L., Yan, G., Zhao, H., Sun, H., Zou, S., Han, J., Ma, C.W., Kong, L., Zhou, X., Nan Y. and Wang, X. (2016) High-Throughput Chinmedomics-Based Prediction of Effective Components and Targets from Herbal Medicine AS1350. Scientific Reports, 6, Article No. 38437.
https://doi.org/10.1038/srep38437
[198]  Wang, X., Zhang, A., Zhou, X., Liu, Q., Nan, Y., Guan, Y., Kong, L., Han, Y., Sun, H. and Yan, G. (2016) An Integrated Chinmedomics Strategy for Discovery of Effective Constituents from Traditional Herbal Medicine. Scientific Reports, 6, Article No. 18997.
https://doi.org/10.1038/srep18997
[199]  Zhou, X.H., Zhang, A.H., Wang, L., Tan, Y.L., Guan, Y., Han, Y., Sun, H. and Wang, X.J. (2016) Novel Chinmedomics Strategy for Discovering Effective Constituents from ShenQiWan Acting on ShenYangXu Syndrome. Chinese Journal of Natural Medicine, 14, 561-581.
https://doi.org/10.1016/S1875-5364(16)30067-X
[200]  Zhang, A.H., Sun, H., Yan, G.L., Wang, P., Han, Y. and Wang, X.J. (2015) Chinmedomics: A New Strategy for Research of Traditional Chinese Medicine. Journal of Chinese Mater Medicine, 40, 569-576.
[201]  Wang, X.J., Zhang, A.H., Sun, H. and Yan, G.L. (2016) Chinmedomics: Newer Theory and Application. Chinese Herbal Medicine, 8, 299-307.
https://doi.org/10.1016/S1674-6384(16)60055-2
[202]  Zhang, A., Liu, Q., Zhao, H., Zhou, X., Sun, H., Nan, Y., Zou, S., Ma, C.W. and Wang, X. (2016) Phenotypic Characterization of Nanshi Oral Liquid Alters Metabolic Signatures during Disease Prevention. Scientific Reports, 6, Article No. 19333.
https://doi.org/10.1038/srep19333
[203]  Wilkins, J.M. and Trushina, E. (2018) Application of Metabolomics in Alzheimer’s Disease. Frontiers in Neurology, 8, 719-739.
https://doi.org/10.3389/fneur.2017.00719
[204]  Ide, K., Matsuoka, N. and Kawakami, K. (2018) Is the Use of Proton-pump Inhibitors a Risk Factor for Alzheimer’s Disease? Molecular Mechanisms and Clinical Implications. Current Medicinal Chemistry, 25, 2166-2174.
https://doi.org/10.2174/0929867325666180129101049
[205]  Coman, H. and Nemes, B. (2017) New Therapeutic Targets in Alzheimer’s Disease. International Journal of Gerontology, 11, 2-6.
https://doi.org/10.1016/j.ijge.2016.07.003
[206]  Airoldi, C., La Ferla, B., D’Orazio, G., Ciaramelli, C. and Palmioli, A. (2018) Flavonoids in the Treatment of Alzheimer’s and Other Neurodegenerative Diseases. Current Medicinal Chemistry, 25, 3228-3246.
https://doi.org/10.2174/0929867325666180209132125

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133