|
- 2018
Hom-Jordan李代数的交换扩张
|
Abstract:
摘要: 通过Hom-Jordan李代数T的表示,得到构造Hom-Jordan李代数T⊕V的充分必要条件。证明了Hom-Jordan李代数的等价交换扩张给出相同的表示。通过交换扩张的截面得到一个2-上圈。
Abstract: Using representations of Hom-Jordan Lie algebras T, the sufficient and necessary conditions of constructing Hom-Jordan Lie algebra T⊕V are obtained. The equivalent abelian extensions of Hom-Jordan Lie algebras giving the same representation is proved. A 2-cocycle by a section of the abelian extension is obtained
[1] | HARTWIG J, LARSSON D, SILVESTROV S. Deformations of Lie algebras using <i>σ</i>-derivations[J]. Journal of Algebra, 2006, 295(2):314-361. |
[2] | LARSSON D, SILVESTROV S. Quasi-Hom-Lie algebras, central extensions and 2-cocycle-like identities[J]. Journal of Algebra, 2005, 288(2):321-344. |
[3] | MA Lili, CHEN Liangyun, ZHAO Jun. δ-Hom-Jordan Lie superalgebras[J]. Communications in Algebra, 2018, 46(4):1668-1697. |
[4] | ZHAO Jun, CHEN Liangyun, MA Lili. Representations and <i>T</i><sup>*</sup>-extensions of Hom-Jordan-Lie algebras[J]. Communications in Algebra, 2016, 44(7):2786-2812. |
[5] | OKUBO S, KAMIYA N. Jordan-Lie superalgebra and Jordan-Lie triple system[J]. Journal of Algebra, 1997, 198(2):388-411. |
[6] | SHENG Yunhe. Representations of Hom-Lie algebras[J]. Algebras and Representation Theory, 2012, 15(6):1081-1098. |
[7] | LIU Yan, CHEN Liangyun, MA Yao. Hom-Nijienhuis operators and <i>T</i><sup>*</sup>-extensions of Hom-Lie superalgebras[J]. Linear Algebra and its Applications, 2013, 439(7):2131-2144. |
[8] | ABDAOUI K, AMMAR F, MAKHLOUF A. Constructions and cohomology of Hom-Lie color algebras[J]. Communications in Algebra, 2015, 43(11):4581-4612. |
[9] | QIAN Ling, ZHOU Jia, CHEN Liangyun. Engel theorem of Jordan Lie algebra and its applications[J]. Chinese Annals of Mathematics Series A, 2012, 33A(5):517-526. |