全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于网络有效阻抗的社区发现算法
Community detection algorithm based on effective resistance of network

DOI: 10.6040/j.issn.1671-9352.1.2017.041

Keywords: 社区发现,最大化,阻抗,启发式,
heuristic
,community detection,maximization,effective resistance

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 社区发现在很多领域都有非常重要的应用。受经典电路网络中的阻抗原理启发,提出了一个新颖的社区发现算法。该算法通过迭代调用基于网络总阻抗的割边选择模型来实现社区发现的目标。在每一次迭代过程中,割边选择模型采用启发式策略割除恰当数量的边,使得割边后的网络有效阻抗最大化。理论分析表明该算法具有较低的算法复杂度。利用仿真数据和真实数据对算法进行测试,实验结果表明算法性能良好。
Abstract: Community detection has a number of important applications in many areas. Inspired by the principle of effective resistance in traditional electrical circuit, we propose a novel community detection algorithm which can discover communities by iteratively calling the edge-cutting selection model based on the total effective resistance of a network. In each iteration, the edge-cutting selection model cuts an appropriate number of edges in order to maximize the total effective resistance of the updated network. Theoretical analysis shows that our algorithm has relatively low algorithm complexity degree. Extensive empirical experiments have been conducted on simulated and real complex networks, the results show that the proposed algorithm has good performance

References

[1]  VU T T, SONG Dawei, WILLIS A, et al. Improving search personalisation with dynamic group formation[C] // Proceedings of the International ACM SIGIR Conference. New York: ACM, 2014: 951-954.
[2]  NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 69(2):026113.
[3]  CLAUSET A, NEWMAN M E, MOORE C. Finding community structure in very large networks[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2004, 70(6 Pt 2):066111. DOI: 10.1103/PhysRevE.70.066111.
[4]  CHOUDHURY D, BHATTACHARJEE S, DAS A. An empirical study of community and sub-community detection in social networks applying Newman-Girvan algorithm[C] // International Conference on Emerging Trends and Applications in Computer Science. New York: IEEE, 2013: 74-77.
[5]  LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2008, 78(2):046110.
[6]  ZACHARY W W. An information flow model for conflict and fission in small groups[J]. Journal of Anthropological Research, 1977, 33(4):452-473.
[7]  YIP K Y, CHEUNG D W, NG M K. HARP: a practical projected clustering algorithm[J]. IEEE Transactions on Knowledge & Data Engineering, 2004, 16(11):1387-1397.
[8]  ZHU Xiaohu, SONG Wenjun, WANG Chongjun, et al. Improved algorithm based on girvan-newman algorithm for community detection[J]. Journal of Frontiers of Computer Science & Technology, 2010, 4(12):1101-1108.
[9]  GHOSH A, BOYD S, SABERI A. Minimizing effective resistance of a graph[J]. Siam Review, 2008, 50(1):37-66.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133