全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

融合时间特征的社交媒介用户影响力分析
User influence analysis of social media with temporal characteristics

DOI: 10.6040/j.issn.1671-9352.0.2017.371

Keywords: 时间特征,张量,社会影响力,
Temporal Characteristics
,Social Influence,Tensor

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对现有张量影响力模型未能充分考虑用户的时间特征以及在线学习等问题,提出了一种融合时间特征的社交媒介用户影响力分析方法。该方法首先将用户观点、活跃度、网络中心度等特征加入张量模型中,并将张量分解过程中的用户潜在特征矩阵加入时间特征约束;其次,采用随机梯度下降的方法进行张量的分解;最后,通过融合不同张量片的影响力信息得到用户影响力得分。该方法的优点是能够快速分解张量并准确预测特定话题领域下的用户社会影响力,同时能够在已有模型参数的基础上进行新数据的在线训练。实验结果表明,与现有TwitterRank、OOLAM、受限非负张量分解模型等相比, 该方法在平均预测准确率上提升了2%~6%。同时,该方法的时间消耗仅为受限非负张量分解模型的30%~50%。
Abstract: Since both the temporal characteristics and online learning are not fully considered in exsiting tensor influence models, a novel method with temporal characteristics is proposed in this paper. This method constructs tensor with users opinion, activity and network centrality information. Then, a factorizes tensor with stochastic gradient descent algorithm which is constrained by temporal characteristics matrix is deployed in our model. Base on these two steps above, this method calculates user influence by combining different slices of tensor in the end. The advantages of this method are that it can decompose tensor efficiently and satisfy the need of online learning. Experimental results show that the average accuracy of the proposed method is 2% to 6% better than the baseline method such as TwitterRank, OOLAM and constrained nonnegative tensor factorization method. Besides, the running time of the proposed method is only 30% to 50% of constrained nonnegative tensor factorization method

References

[1]  HU X, TANG L, TANG J, et al. Exploiting social relations for sentiment analysis in microblogging[C] //Proceedings of the sixth ACM international conference on Web search and data mining. New York: ACM, 2013: 537-546.
[2]  MAEHARA T, HAYASHI K, KAWARABAYASHI K-I. Expected tensor decomposition with stochastic gradient descent[C] //Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2016: 1919-1925.
[3]  ACAR E, DUNLAVY D M, KOLDA T G. A scalable optimization approach for fitting canonical tensor decompositions[J]. Journal of Chemometrics, 2011, 25(2): 67-86.
[4]  ZEILER M D. ADADELTA: an adaptive learning rate method[J]. CoRR, 2012, abs/1212.5701(1): 1-6.
[5]  RODRIGUEZ M G, LESKOVEC J, KRAUSE A. Inferring networks of diffusion and influence[C] //Acm Knowledge Discovery & Data Mining. New York: ACM, 2011: 1019-1028.
[6]  KOLDA T G, BADER B W. Tensor decompositions and applications[J]. Siam Review, 2005, 66(4): 294-310.
[7]  KEMPE D, KLEINBERG J, TARDOS é. Maximizing the spread of influence through a social network[J]. Progressive Research, 2008:137-146.
[8]  CAI K, BAO S, YANG Z, et al. OOLAM: an opinion oriented link analysis model for influence persona discovery[C] //Proceedings of the fourth ACM international conference on Web search and data mining. New York: ACM, 2011: 645-654.
[9]  CUI P, WANG F, YANG S, et al. Item-level social influence prediction with probabilistic hybrid factor matrix factorization[C] //AAAI Conference on Artificial Intelligence. Menlo Park, CA: AAAI Press, 2011.
[10]  吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-752.
[11]  WENG J, LIM E P, JIANG J, et al. TwitterRank: finding topic-sensitive influential twitterers[C] //International Conference on Web Search and Web Data Mining. New York: ACM, 2010: 261-270.
[12]  BADASHIAN A S, STROULIA E. Measuring user influence in GitHub: the million follower fallacy[C] //Proceedings of the 3rd International Workshop on CrowdSourcing in Software Engineering. New York: ACM, 2016: 15-21.
[13]  LEE R K-W, LIM E P. Measuring user influence, susceptibility and cynicalness in sentiment diffusion[C] //Advances in Information Retrieval-37th European Conference on IR Research. Cham: Springer International Publishing, 2015: 411-422.
[14]  LI D, TANG J, DING Y, et al. Topic-level opinion influence model(TOIM): An investigation using tencent microblogging[J]. Computer Science, 2015, 6(12): 2657-2673.
[15]  CHEN C, GAO D, LI W, et al. Inferring topic-dependent influence roles of Twitter users[C] //Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. New York: ACM, 2014: 1203-1206.
[16]  魏晶晶, 陈畅, 廖祥文, 等. 基于受限非负张量分解的用户社会影响力分析[J]. 通信学报, 2016, 37(6): 154-162.
[17]  EMBAR V R, BHATTACHARYA I, PANDIT V, et al. Online topic-based social influence analysis for the wimbledon championships[C] //Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1759-1768.
[18]  WANG J, LIU Z, ZHAO H. Topic oriented user influence analysis in social networks[C] //IEEE/Wic/ACM International Conference on Web Intelligence and Intelligent Agent Technology. Washington, DC: IEEE Computer Society, 2015: 123-126.
[19]  ZAMPARAS V, KANAVOS A, MAKRIS C. Real time analytics for measuring user influence on twitter[C] //IEEE International Conference on TOOLS with Artificial Intelligence. Washington, DC: IEEE Computer Society, 2015: 591-597.
[20]  毛佳昕, 刘奕群, 张敏, 等. 基于用户行为的微博用户社会影响力分析[J]. 计算机学报, 2014, 37(4): 791-800.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133