全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2019 

柞蚕丝素蛋白和壳聚糖复合材料的制备及其生物学特性 Preparation of the artificial scaffold formed by tussah silk fibroin/chitosan and its biological properties research

Keywords: 柞蚕丝素蛋白,壳聚糖,组织工程,脊髓损伤

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的∶探讨制备修复脊髓损伤人工支架材料成分柞蚕丝素蛋白和壳聚糖最佳配比,并检测材料的生物学特性。方法∶应用精炼法制备的柞蚕丝素蛋白与壳聚糖混合交联制作柞蚕丝素蛋白/壳聚糖(TSF/CS)支架,按不同比例分为TSF/CS1(20∶80)、TSF/CS2(40∶60)、TSF/CS3(60∶40)和TSF/CS4(80∶20)。扫描电镜检测材料的表面结构。并对支架材料的孔隙率、吸水性及体外的降解特点进行检测。将传三代的兔骨髓间充质干细胞(rBMSCs)接种于支架材料的浸提液中检测支架材的细胞毒性,将施万细胞直接接种于材料表面检测其对细胞的黏附特性。结果∶应用冷冻干燥法可以获得TSF/CS三维支架材料,电镜下可见各组材料的孔隙几乎均为平行排列。孔径的大小以TSF/CS3(60∶40)适中,孔径大小78~436μm,孔隙率为85%,抗压强度适中,吸水率在24 h内的各个时间点也优于其他3组(P<0.01)。在体外的降解过程中,溶液的pH值在6.78~7.39之间。各种材料在第12周时均有不程度的降解,其中以TSF/CS3降解程度最为明显,达到了18.02%。24周时,TSF/CS3的降解程度达到了46.42%,明显高于其他3组(P<0.01)。各组材料的浸提液对兔BMSCs几乎没有毒性作用,TSF/CS3组材料能明显的促进细胞的黏附,电镜下可见BMSCs在支架材料表面生长状况良好。结论∶柞蚕丝素蛋白与壳聚糖混合交联后应用冷冻干燥的方法可以制备出三维多孔支架材料,在不同的TSF含量中,TSF/CS3(60︰40)组材料在各个特性方面均优于其他3组材料

References

[1]  栾希英,段巧艳,段祥,等.再生柞蚕丝素蛋白对人骨髓间充质干细胞体外扩增的支持作用[J].中国生物医学工程学报,2007,26(2):276-281.Luan XY,Duan QY,Duan X,et al.Study on regenerated antheraea pernyi silk fibroin in supporting the in vitro expansion of bone marrow derived mesenchymal stem cells[J].Chinese Journal of Biomedical Engineering,2007,26(2):276-281.
[2]  王竞男,罗嘉浩,杨立群,等.壳聚糖及其衍生物在药物载体方面的研究进展[J].转化医学杂志,2017,6(4):193-198.Wang JN,Luo JH,Yang LQ,et al.Progress on chitosan and its derivatives as drug delivering carriers[J].Translational Medicine Journal,2017,6(4):193-198.
[3]  Shahbazarab Z,Teimouri A,Chermahini AN,et al.Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering[J].Int J Biol Macromol,2018,108(3):1 017-1 027.
[4]  张继波,郑德宇.纳米羟基磷灰石/壳聚糖/柞蚕丝素蛋白三元复合支架材料的制备及其生物性能的研究[D].锦州:锦州医科大学,2013.Zhang JB,Zheng DY.The preparation and the study of biological performance of nano hydroxyapatite/chitosan/tussah silk protein ternary mixedmaterials[D].Jinzhou:Jinzhou Medical University,2013.
[5]  Ammar AS,Osman Y,Hendam AT,et al.A method for reconstruction of severely damaged spinal cord using autologous hematopoietic stem cells and platelet-rich protein as a biological scaffold[J].Asian J Neurosurg,2017,12(4):681-690.
[6]  Varoni EM,Vijayakumar S,Canciani E,et al.Chitosan-based trilayer scaffold for multitissue periodontal regeneration[J].J Dent Res,2018,97(3):303-311.
[7]  Zhao Y,Tang F,Xiao Z,et al.Clinical study of neuroregen scaffold combined with human mesenchymal stem cells for the repair of chronic complete spinal cord injury[J].Cell Transplant,2017,26(5):891-900.
[8]  Liu Y,You R,Liu G,et al.Antheraeapernyi silk fibroin-coated PEI/DNA complexes for targeted gene delivery in HEK 293 and HCT 116 cells[J].Int J Mol Sci,2014,15(5):7 049-7 063.
[9]  Yin H,Jiang T,Deng X,et al.A cellular spinal cord scaffold seeded with rat adiposederived stem cells facilitates functional recovery via enhancing axon regeneration in spinal cord injured rats[J].Mol Med Rep,2018,17(2):2 998-3 004.
[10]  Cui Z,Ni NC,Wu J,et al.Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation[J].Theranostics,2018,8(10):2 752-2 764.
[11]  张仁坤,涂悦,赵明亮,等.3-D打印胶原蛋白-硫酸肝素仿生脊髓支架的研究[J].中国修复重建外科杂志,2015,29(8):1 022-1 027.Zhang RK,Tu Y,Zhao ML,et al.Preparation of bionic collagen-heparin sulfate spinal cord scafold with three-dimensional print technology[J].Chinese Journal of Reparative and Reconstructive Surgery,2015,29(8):1 022-1 027.
[12]  Aluko K,Velayudhan DE,Khafipour E,et al.Combined effects of chitosan and microencapsulated Enterococcus faecalis CG1.0007 probiotic supplementation on performance and diarrhea incidences in enterotoxigenic Escherichia coli K88(+)challenged piglets[J].Anim Nutr,2017,3(4):366-371.
[13]  Liverani L,Lacina J,Roether JA,et al.Incorporation of bioactive glass nanoparticles in electrospun PCL/chitosan fibers by using benign solvents[J].Bioact Mater,2017,3(1):55-63.
[14]  李默,陈志国.脊髓损伤的细胞移植治疗及研究进展[J].神经疾病与精神卫生,2017,17(6):438-441.Li M,Chen ZG.Advance in reasching and thyrapy of cell transplantation for spinal injury[J].Nervous Disease and Mental Health,2017,17(6):438-441.
[15]  Chen J,Altman GH,Karageorgiou V,et al.Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers[J].J Biomed Mater Res A,2003,67(2):559-570.
[16]  夏海坚,刘丹,钟东,等.聚甲基丙烯酸甲酯静电纺丝纳米纤维对大鼠原代星形胶质细胞生长的影响[J].南方医科大学学报,2014,34(11):1 569-1 573.Xia HJ,Liu D,Zhong D,et al.Impact of topographic features of electrospun polymethylmethacrylate nanofibers on growth pattern of rat primary astrocytes[J].Journal of Southern Medical University,2014,34(11):1 569-1 573.
[17]  Takashima K,Hoshino M,Uesugi K,et al.X-ray phase-contrast computed tomography visualizes the microstructure and degradation profile of implanted biodegradable scaffolds after spinal cord injury[J].J Synchrotron Radiat,2015,22(1):136-142.
[18]  Liu BF,Ma J,Xu QY,et al.Regulation of charged groups and laminin patterns for selective neuronal adhesion[J].Colloids Surf B Biointerfaces,2006,53(2):175-178.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133