全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

车联网环境下的动态Robertson车队离散模型
Dynamic Robertson's Platoon Dispersion Model in Connected Vehicle Environment

DOI: 10.3969/j.issn.0258-2724.2018.02.023

Keywords: 交通工程,车联网,车队离散,动态参数,信号控制,
traffic engineering
,connected vehicles,platoon dispersion,dynamic parameters,signal control

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统Robertson车队离散模型参数估计是基于历史数据,不能很好地反映交通流的动态变化特征,为解决这一问题,构建了车联网环境下的动态Robertson车队离散模型.考虑到车联网环境下车辆的行程时间数据易于获得,基于此可对Robertson模型的相关参数进行实时动态估计建立动态Robertson车队流量离散模型.通过实际调查数据,分析了上游交叉口车辆离去流率与下游交叉口车辆到达流率的关系,并将文中模型与静态Robertson模型、实际观测数据进行了比较分析.结果表明,文中动态模型更能反映交通流的车队离散规律,与静态Robertson模型相比,平均预测均方误差减少了30.68%.
:The parameters of the traditional Robertson's platoon dispersion model are based on historical data, and thus, it cannot provide a good reflection of the dynamic characteristics of traffic flow. In order to solve this problem, a connected vehicle environment is considered, and the travel time of the vehicles is easily obtained. The relevant parameters of the Robertson's model can be estimated in real time based on this. Then, a dynamic Robertson's platoon dispersion model was proposed. Later, the relationship between the arrival flow rate of the downstream intersection and the departing flow rate of the upstream intersection was analysed using the proposed model with field collected data, and compared with those obtained using the traditional Robertson's model and actual data. The results show that the proposed model can better describe the law of dispersion in traffic flow, and the mean squared error of prediction is reduced by approximately 30.68%, compared with the traditional Robertson's model

References

[1]  ROESS R P, PRASSAS E S, MCSHANE W R. Traffic engineering:united states edition[M]. Englewood Cliffs:Prentice-Hall, 2010:5-10.
[2]  BONNESON J, PRATT M, VANDEHEY M. Predicting arrival flow profiles and platoon dispersion for urban street segments[J]. Transportation Research Record:Journal of the Transportation Research Board, 2010,2173:28-35.
[3]  JIANG Yangsheng, YAO Zhihong, DING Xiao, et al. Mixed platoon flow dispersion model based on truncated mixed phase distribution of speed//Transportation Research Board of the National Academies.[2016-05-17]. https://pubsindex.trb.org/view/2016/C/1393937.
[4]  JIANG Yi, LI Shuo, SHAMO D E. A platoon-based traffic signal timing algorithm for major-minor intersection types[J]. Transportation Research Part B Methodological, 2006, 40(7):543-562.
[5]  PACEY G M. The progress of a bunch of vehicles released from a traffic signal[R]. London:Transport and Road Research Laboratory, 1956.
[6]  SEDDON P A. Another look at platoon dispersion 3:the recurrence relationship[J]. Traffic Engineering and Control, 1972, 13(10):442-444.
[7]  HUNT P, ROBERTSON D, BRETHERTON R, et al. SCOOT:a traffic responsive method of coordinating signals[R]. London:Transport and Road Research Laboratory, 1981.
[8]  HALL M, WILLUMSEN L G. SATURN:a simulation-assignment model for the evaluation of traffic management schemes[J]. Traffic Engineering & Control, 1980, 21(4):81-94.
[9]  POLUS A. A study of travel time and reliability on arterial routes[J]. Transportation, 1979, 8(2):141-151.
[10]  YU Lei. Calibration of platoon dispersion parameters on the basis of link travel time statistics[J]. Transportation Research Record:Journal of the Transportation Research Board, 2000, 1727:89-94.
[11]  PAUL B, MITRA S, MAITRA B. Calibration of Robertson's platoon dispersion model in non-lane based mixed traffic operation[J]. Transportation in Developing Economies, 2016, 2(2):1-14.
[12]  姚志洪,蒋阳升,吴云霞, 等. 基于速度服从混合PH分布的车队离散模型[J]. 交通运输系统工程与信息,2016, 16(3):133-140. YAO Zhihong, JIANG Yangsheng, WU Yunxia, et al. Platoon dispersion model based on mixed phase distribution of speed[J]. Journal of Transportation Systems Engineering and Information Technology, 2016,16(3):133-140.
[13]  姚志洪,沈旅欧,巫威眺,等. 基于行程时间分布的异质交通流车队离散模型[J]. 中国公路学报,2016,29(8):134-142,151. YAO Zhihong, SHEN Lüou, WU Weitiao, et al. Heterogeneous traffic flow platoon dispersion model based on travel time distribution[J]. China Journal of Highway and Transport, 2016, 29(8):134-142, 151.
[14]  巫威眺,沈旅欧,靳文舟. 基于速度截断分布和流量的车队离散模型[J]. 西南交通大学学报,2014, 49(1):126-133. WU Weitiao, SHEN Lüou, JIN Wenzhou. Platoon flow dispersion model based on truncated normal distribution of speed[J]. Journal of Southwest Jiaotong University, 2014, 49(1):126-133.
[15]  LEE J, PARK B. Development and evaluation of a cooperative vehicle intersection control algorithm under the connected vehicles environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(1):81-90.
[16]  FENG Yiheng. Intelligent traffic control in a connected vehicle environment[D]. Arizona:The University of Arizona, 2015.
[17]  YU Lei. Real-time calibration of platoon dispersion model to optimizethe coordinated traffic signal timings in ATMS networks[R]. Houston:Center for TransportationTraining and Research, Texas Southern University, Houston, 1999.
[18]  JIANG Yangsheng, YAO Zhihong, LUO Xiaoling, et al. Heterogeneous platoon flow dispersion model based on truncated mixed simplified phase-type distribution of travel speed[J]. Journal of Advanced Transportation, 2016, 50:2160-2173.
[19]  TIAPRAPRASERT K, ZHANG Yunlong, WANG Xiubin, et al. Queue length estimation using connected vehicle technology for adaptive signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(4):2129-2140.
[20]  GRACE M J, POTTS R B. A theory of the diffusion of traffic platoons[J]. Operations Research, 1964, 12(2):255-275.
[21]  HILLIER J A, ROTHERY R. The synchronization of traffic signals for minimum delay[J]. Transportation Science, 1967, 1(2):81-94.
[22]  TRACZ M. The prediction of platoon dispersion based on rectangular distribution of journey time[J]. Traffic Engineering & Control, 1975, 16(11):25-36.
[23]  BIE Yiming, LIU Zhiyuan, MA Dongfang, et al. Calibration of platoon dispersion parameter considering the impact of the number of lanes[J]. Journal of Transportation Engineering, 2013, 139(2):200-207.
[24]  ROBERTSON D I. TRANSYT:a traffic network study tool[R]. London:Transport and Road Research Laboratory, 1969.
[25]  FENG Yiheng, HEAD K L, KHOSHMAGHAM S, et al. A real-time adaptive signal control in a connected vehicle environment[J]. Transportation Research Part C Emerging Technologies, 2015, 55:460-473.
[26]  LIEBERMAN E B, ANDREWS B. TRAFLO:a new tool to evaluate transportation system management strategies[J]. Transportation Research Record:Journal of the Transportation Research Board, 1980, 772:9-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133