全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Direct Electron Transfer of Hemoglobin on Manganese III Oxide-Ag Nanofibers Modified Glassy Carbon Electrode

DOI: 10.1155/2012/375831

Full-Text   Cite this paper   Add to My Lib

Abstract:

We investigated the electrochemical behavior of hemoglobin by glassy carbon electrode modified with Mn2O3-Ag nanofibers. The Mn2O3-Ag nanofibers were used as facilitator electron transfer between Hb and glassy-carbon-modified electrode. The Mn2O3-Ag nanofibers are studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hemoglobin showed a quasireversible electrochemical redox behavior with a formal potential of ?49?mV (versus Ag/AgCl) in 0.1?M potassium phosphate buffer solution at pH 7.0. The designed biosensor possesses good stability and reproducibility and achieves 95% of the steady-state current in less than five seconds. 1. Introduction Hemoglobin is a remarkable molecular machine that uses motion and small structural changes to regulate its action. Oxygen binding at the four heme sites in hemoglobin does not happen simultaneously. Once the first heme binds oxygen, it introduces small changes in the structure of the corresponding protein chain. The main function of red blood cell is transfer of O2 from lungs to tissue and transfer of CO2 from tissue to lungs. To accomplish these functions, red cells have hemoglobin (Hb). The Hb has iron in center of its structure [1]. The iron has important role in Hb structure [2]. We too used Hb in this project. Glassy carbon derives its name from exhibiting fracture behavior similar to glass, from having a disordered structure over large dimensions (although it contains a graphitic microcrystalline structure), and because it is a hard shiny material, capable of high polish [3–5]. Glassy carbon is particularly useful in electrochemical applications because of its low electrical resistivity, impermeability to gases, high chemical resistance, and because it has the widest potential range observed for carbon electrode. Glassy carbon was first prepared by Yamada and Sato in 1962 by the hight emperature pyrolysis of phenolic resin, and later by Davison who used cellulose as the starting material [6, 7]. They concluded that glassy carbon consists of long microfibrils that twist, bend, and interlock to form interfibrillar bonds, and that these microfibrils are randomly oriented [8]. Because of the desire to impart selectivity to electrochemical reactions and to control electron transfer kinetics, several investigators have utilized adsorption or covalent bonding of catalysts to the glassy carbon surface. The intent of these modifications is to control the interaction of molecules and ions with the electrode surface [9]. Small fibers in the submicron range, in comparison with larger

References

[1]  F. Davis and S. P. J. Higson, “Biofuel cells-recent advances and applications,” Biosensors and Bioelectronics, vol. 22, no. 7, pp. 1224–1235, 2007.
[2]  M. C. Potter, “Electrical effects accompanying the decomposition of organic compounds,” Proceedings of the Royal Society, vol. 84, pp. 260–276, 1912.
[3]  A. T. Yahiro, S. M. Lee, and D. O. Kimble, “Bioelectrochemistry. I. Enzyme utilizing bio-fuel cell studies,” Biochimica et Biophysica Acta, vol. 88, no. 2, pp. 375–383, 1964.
[4]  M. T. Sulak, O. G?kdo?an, A. Gülce, and H. Gülce, “Amperometric glucose biosensor based on gold-deposited polyvinylferrocene film on Pt electrode,” Biosensors and Bioelectronics, vol. 21, no. 9, pp. 1719–1726, 2006.
[5]  R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, “Biofuel cells and their development,” Biosensors and Bioelectronics, vol. 21, no. 11, pp. 2015–2045, 2006.
[6]  K. G. Lim and G. T. R. Palmore, “Microfluidic biofuel cells: the influence of electrode diffusion layer on performance,” Biosensors and Bioelectronics, vol. 22, no. 6, pp. 941–947, 2007.
[7]  A. Heller, “Miniature biofuel cells,” Physical Chemistry Chemical Physics, vol. 6, no. 2, pp. 209–216, 2004.
[8]  Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, “Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis,” Physical Chemistry Chemical Physics, vol. 9, no. 15, pp. 1793–1801, 2007.
[9]  S. Rezaei-Zarchi, M. Negahdary, M. Doroudian et al., “Direct electron transfer of Myoglobin on nickel oxide Nanoparticles modified graphite electrode,” Advances in Environmental Biology, vol. 5, no. 10, pp. 3241–3248, 2011.
[10]  J. Wang and M. Musameh, “Carbon nanotube/Teflon composite electrochemical sensors and biosensors,” Analytical Chemistry, vol. 75, no. 9, pp. 2075–2079, 2003.
[11]  K. Wu, J. Fei, and S. Hu, “Simultaneous determination of dopamine and serotonin on a glassy carbon electrode coated with a film of carbon nanotubes,” Analytical Biochemistry, vol. 318, no. 1, pp. 100–106, 2003.
[12]  X.-H. Zhang and S.-F. Wang, “Determination of ethamsylate in the presence of catecholamines using 4-amino-2-mercaptopyrimidine self-assembled monolayer gold electrode,” Sensors and Actuators, B, vol. 104, no. 1, pp. 29–34, 2005.
[13]  J. X. Wang, X. W. Sun, A. Wei et al., “Zinc oxide nanocomb biosensor for glucose detection,” Applied Physics Letters, vol. 88, no. 23, Article ID 233106, 2006.
[14]  Y. Ding, Y. Wang, L. Su, M. Bellagamba, H. Zhang, and Y. Lei, “Electrospun Co3O4 nanofibers for sensitive and selective glucose detection,” Biosensors and Bioelectronics, vol. 26, no. 2, pp. 542–548, 2010.
[15]  J. Rubio Retama, E. López Cabarcos, D. Mecerreyes, and B. López-Ruiz, “Design of an amperometric biosensor using polypyrrole-microgel composites containing glucose oxidase,” Biosensors and Bioelectronics, vol. 20, no. 6, pp. 1111–1117, 2004.
[16]  X. Lu, J. Zhou, W. Lu, Q. Liu, and J. Li, “Carbon nanofiber-based composites for the construction of mediator-free biosensors,” Biosensors and Bioelectronics, vol. 23, no. 8, pp. 1236–1243, 2008.
[17]  A. J. Amalraj, M. Sundaravadivelm, A. P. P. Regis, and S. Rajendran, “Corrosion inhibition by polyvinylpyrrolidone,” in Proceedings of the 9th European Symposium on Corrosion Inhibitors, p. 407, 2000.
[18]  A. A. Gürten, M. Erbil, and K. Kayakirilmaz, “Effect of polyvinylpyrrolidone on the corrosion resistance of steel,” Cement and Concrete Composites, vol. 27, no. 7-8, pp. 802–808, 2005.
[19]  Y. Jianguo, W. Lin, V. Otieno-Alego, and D. P. Schweinsberg, “Polyvinylpyrrolidone and polyethylenimine as inhibitors for the corrosion of a low carbon steel in phosphoric acid,” Corrosion Science, vol. 37, no. 6, pp. 975–985, 1995.
[20]  K. Oksman, M. Skrifvars, and J. F. Selin, “Natural fibres as reinforcement in polylactic acid (PLA) composites,” Composites Science and Technology, vol. 63, no. 9, pp. 1317–1324, 2003.
[21]  J. Xu, J. Zhang, W. Gao, H. Liang, H. Wang, and J. Li, “Preparation of chitosan/PLA blend micro/nanofibers by electrospinning,” Materials Letters, vol. 63, no. 8, pp. 658–660, 2009.
[22]  T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes,” Nature, vol. 358, no. 6383, pp. 220–222, 1992.
[23]  Y. B. Vassilyev, O. A. Khazova, and N. N. Nikolaeva, “Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts. Part II. Effect of the nature of the electrode and the electrooxidation mechanism,” Journal of Electroanalytical Chemistry, vol. 196, no. 1, pp. 127–144, 1985.
[24]  A. Gorman, A. McGowan, and T. G. Cotter, “Role of peroxide and superoxide anion during tumour cell apoptosis,” FEBS Letters, vol. 404, no. 1, pp. 27–33, 1997.
[25]  Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M. M. F. Choi, “An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode,” Analyst, vol. 133, no. 1, pp. 126–132, 2008.
[26]  A. J. Bard and L. R. Faulkner, “Electrochemical methods,” in Fundamentals and Applications, p. 241, John Wiley & Sons, New York, NY, USA, 2nd edition, 2001.
[27]  E. Laviron, “General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems,” Journal of Electroanalytical Chemistry, vol. 101, no. 1, pp. 19–28, 1979.
[28]  E. Laviron, “The use of linear potential sweep voltammetry and of a. c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes,” Journal of Electroanalytical Chemistry, vol. 100, no. 1-2, pp. 263–270, 1979.
[29]  R. Banerjee and R. Cassoly, “Preparation and properties of the isolated α and β chains of human hemoglobin in the ferri state. Investigation of oxidation-reduction equilibria,” Journal of Molecular Biology, vol. 42, no. 2, pp. 337–349, 1969.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133