|
- 2018
多模式分布式遥感微纳航天器集群自然编队构型
|
Abstract:
分布式遥感技术是目前空间探测技术发展的重要方向,其核心是研究由多个微纳航天器组成的分布式遥感集群的系统特性,并根据不同的应用模式进行编队的维持与重构。由于微纳航天器所携带的燃料有限,如何在自然编队的条件下保持系统在较长时间内的构形稳定是基于分布式微纳航天器的遥感技术亟待解决的重要问题。该文针对多模式分布式遥感任务想定和燃料最省、求解高效等目标,研究了异构集群自然编队构型设计。提出了一种参数直接求解的方法,可以在平面内绕飞模式、领航模式等典型模式下直接获取编队中各伴飞航天器的轨道参数。STK仿真结果表明:该方法精度较高,编队构型稳定,可以满足应急遥感任务要求。
Abstract:Distributed remote sensing has attracted much attention for space exploration. The sensing ability is based on the system properties of the spacecraft cluster composed by multiple nano/micro spacecraft. In addition, the multiple nano/micro spacecraft formation can be rearranged for different applications. However, since the micro/nano spacecraft have little fuel, methods are urgently needed to maintain the stability of the distributed remote sensing nano/micro spacecraft formation for a relatively long period in a natural formation.The natural nano/micro spacecraft cluster formation is analyzed have for a multiple distributed remote sensing task scenario that optimizes the fuel usage and calculational efficiency. A direct parameter method was designed for the typical tasks of in-plane flying with a tree communication topology and leader-following topology modes. The orbit parameters of the followers are obtained directly by this method. STK simulations show this approach is accurate, robust, and useful for emergency remote sensing tasks.
[1] | 周美江, 吴会英, 齐金玲.微纳卫星共面伴飞相对运动椭圆短半轴最省燃料控制[J]. 中国空间科学技术, 2015, 5(4):22-31.ZHOU M J, WU H Y, QI J L. Minimum fuel control of the elliptic short axis of the relative motion in micro/nano satellite coplanar flying[J]. Chinese Space Science and Technology, 2015, 5(4):22-31. (in Chinese) |
[2] | 张育林, 曾国强, 王兆魁, 等. 分布式卫星系统理论及应用[M]. 北京:科学出版社, 2008.ZHANG Y L, ZENG G Q, WANG Z K. Theory and application of distributed satellite system[M]. Beijing:Science Press, 2008. (in Chinese) |
[3] | SABOL C, BUMS R, MCLAUGHLIN C A. Satellite formation flying design and evolution[J]. Journal of Spacecraft and Rocket, 2001, 38(2):270-278. |
[4] | SCHWEIGHART S A, SEDWICK R J. High fidelity linearized J<sub>2</sub> model for satellite formation flight[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(6):1073-1080. |
[5] | VADALI S R, ALFRIEND K T, VADDI S. Hill's equations, mean orbital elements, and formation flying of satellites[C]//The Richard H. Battin Astrodynamics Symposium. College Station, TX, USA:AAS, 2000:187-203. |
[6] | AFFRIEND K T, SCHANB H, GIM D W. Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies[C]//AAS Guidance and Control Conference. San Diego, CA, USA:AAS, 2000:1-12. |
[7] | SCHAUB H, ALFRIEND K T. J<sub>2</sub> invariant relative orbits for spacecraft formations[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 79(2):77-95. |
[8] | 吴宝林, 曹喜滨, 任子武. 一种长期稳定的卫星编队队形优化设计方法[J]. 航空学报, 2007, 28(1):167-172.WU B L, CAO X B, REN Z W. A long-time stable formation optimal design method for satellite formation[J]. Acta Aeronautica Astronautica Sinica, 2007, 28(1):167-172. (in Chinese) |
[9] | 刘林.航天器轨道理论[M]. 北京:国防工业出版社, 2000.LIU L. Orbit theory of spacecraft[M]. Beijing:National Defend Industry Press, 2000. (in Chinese) |
[10] | CARTER T E. New form for the optimal rendezvous equations near a Keplerian orbit[J]. Journal of Guidance, Control, and Dynamics, 1990, 13(1):183-186. |
[11] | 孟云鹤. 航天器编队飞行导论[M]. 北京:国防工业出版社, 2014.MENG Y H. Introduction to spacecraft formation flying[M]. Beijing:National Defend Industry Press, 2014. (in Chinese) |
[12] | 孟鑫, 李俊峰, 高云峰. 编队飞行卫星相对运动的零J<sub>2</sub>摄动条件[J]. 清华大学学报(自然科学版), 2004, 44(2):219-223. MENG X, LI J F, GAO Y F. J<sub>2</sub> invariant perturbation conditions for the relative movement for satellites in formation flying[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(2):219-223. (in Chinese) |