全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于迭代学习控制的原子力显微镜成像
Atomic Force Microscopy Imaging Based on Iterative Learning Control

DOI: 10.3969/j.issn.1001-0548.2018.05.012

Keywords: 原子力显微镜,成像方法,迭代学习控制,路径跟踪,压电驱动器

Full-Text   Cite this paper   Add to My Lib

Abstract:

原子力显微镜(AFM)在成像过程中要求纳米级的定位精度,利用压电陶瓷扫描器能满足要求。该文针对压电陶瓷的非线性及外部环境干扰带来的不利影响,设计一种基于迭代学习算法的AFM扫描成像控制器。通过将水平平面内的扫描运动转换为路径跟踪控制问题,在跟踪过程中对前一迭代周期的误差信息进行非因果学习,保证输出沿迭代轴的快速收敛性,以获得理想的跟踪性能。路径跟踪仿真和实际系统成像实验表明该算法可以有效改善系统非线性和外部环境干扰带来的不利影响,显著提高原子力显微镜的成像质量。

References

[1]  BINNIG G, QUATE C F, GERBER C. Atomic force microscope[J]. Physical Review Letters, 1986, 56(9):930.
[2]  LAMARCHE C Q, LEADLEY S, LIU P, et al. Method of quantifying surface roughness for accurate adhesive force predictions[J]. Chemical Engineering Science, 2016, 158:140-153.
[3]  ROUF T B, KOKINI J L. Biodegradable biopolymergraphene nanocomposites[J]. Journal of Materials Science, 2016, 51(22):1-31.
[4]  YANG D, FENG L, DOUGHERTY C A, et al. In vivo targeting of metastatic breast cancer via tumor vasculaturespecific nano-graphene oxide[J]. Biomaterials, 2016, 104:361-371.
[5]  HASSANI V, TJAHJOWIDODO T. A hysteresis model for a stacked-type piezoelectric actuator[J]. Mechanics of Composite Materials & Structures, 2015, 24(1):73-87.
[6]  OWENS D H. Iterative learning control[J]. Control Theory & Applications Iee Proceedings D, 2016, 136(3):105-112.
[7]  KIM K S, ZOU Q. A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(6):1767-1777.
[8]  ZHANG Y, ZOU Q. High-speed force load in force measurement in liquid using scanning probe microscope[J]. Review of Scientific Instruments, 2012, 83(1):013707.
[9]  ALAM F, BALANI K. Adhesion force of staphylococcus aureus on various biomaterial surfaces[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 65:872.
[10]  BULAT K, RYGULA A, SZAFRANIEC E, et al. Live endothelial cells imaged by scanning near-field optical microscopy (SNOM):Capabilities and challenges[J]. Journal of Biophotonics, 2017, 10(6-7):928.
[11]  MARTINOLMOS C, RASOOL H I, WEILLER B H, et al. Graphene MEMS:AFM probe performance improvement[J]. Acs Nano, 2013, 7(5):4164.
[12]  白春礼, 田芳, 罗克. 扫描力显微术[M]. 北京:科学出版社, 2000. BAI Chun-li, TIAN Fang, LUO Ke. Scanning force microscopy[M]. Beijing:Science Press, 2000.
[13]  BAHRAMI M N, YOUSEFI-KOMA A. Modeling and nonlinear analysis of a micro-switch under electrostatic and piezoelectric excitations with curvature and piezoelectric nonlinearities[J]. Journal of Mechanical Science and Technology, 2014, 28(1):263-272.
[14]  HARRISON A J, CORTI D S, BEAUDOIN S P. Capillary forces in nanoparticle adhesion:a review of AFM methods[J]. Particulate Science & Technology, 2015, 33(5):526-538.
[15]  ABRAMOVITCH D Y, HOEN S, WORKMAN R. Semi-automatic tuning of PID gains for atomic force microscopes[C]//American Control Conference.[S.l.]:IEEE, 2008:2684-2689.
[16]  SHAN Y, LEANG K K. Accounting for hysteresis in repetitive control design:Nanopositioning example[J]. Automatica, 2012, 48(8):1751-1758.
[17]  ZHAO Y M, LIN Y, Xi F, et al. Calibration-based iterative learning control for path tracking of industrial robots[J]. IEEE Transactions on Industrial Electronics, 2015, 62(5):2921-2929.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133