全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

初始条件对网络渗流变换的影响
The Effect of Initial Size Distributions on Percolation Transition

DOI: 10.3969/j.issn.1001-0548.2018.02.023

Keywords: 指数分布,渗流变换,幂律分布,敏感度

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,不同添边规则下的网络渗流特征得到了广泛研究,但系统初始条件对渗流变换的影响少有关注。该文研究了初始分支尺度服从指数分布条件下的经典ER(Er?ds-Rényi)渗流过程,通过分支凝聚过程的斯莫洛科夫斯基方程解析分析发现,与经典ER渗流过程相比,尽管渗流仍然连续,但在相变点附近,分支尺度分布不再服从幂律分布,同时,敏感度在相变点也不再满足居里-外斯定律。

References

[1]  HENLEY C L. Statics of a ‘self-organized’ percolation model[J]. Phys Rev Lett, 1993, 71(1):2741-2744.
[2]  ACHLIOPTAS D, D'SOUZA R M, SPENCER J. Explosive percolation in random networks[J]. Science, 2009, 323(5920):1453-1555.
[3]  CHEN Xiao-long, YANG Chun, ZHONG Lin-feng, et al. Crossover phenomena of percolation transition in evolution networks with hybrid attachment[J]. Chaos, 2016, 26:083114.
[4]  da COSTA R A, DOROGOVTSEV S N, GOLTSEV A V, et al. Solution of the explosive percolation quest Ⅱ. Infinite-order transition produced by the initial distributions of clusters[J]. Phys Rev E, 2015, 91(3):032140.
[5]  SMOLUCHOWSKI M V, DIFFUSION D V U. Brownsche bewegung und koagulation von kolloidteilchen[J]. Phys Zeits, 1916, 17:557-585.
[6]  Lü L, CHEN D, REN X L, et al. Vital nodes identification in complex networks[J]. Physics Reports, 2016, 650:1-63.
[7]  MORONE F, MAKSE H A. Influence maximization in complex networks through optimal percolation[J]. Nature, 2015, 524:65-68.
[8]  STAUFFER D, AHARONY A. Introduction to percolation theory[M]. London:Taylor & Francis, 1994.
[9]  DOROGOVTSEV S N. Lectures on complex networks[M]. Oxford, UK:Oxford University Press, 2010.
[10]  BROADBENT S R, HAMMERSLY J M. Percolation processes I crystals and mazes[J]. Proceedings of the Cambridge Philosophical Society, 1957, 53(3):629-641.
[11]  ERD?S P, RéNYI A. On the evolution of random graphs[J]. Publ Math Inst Hungar Acad Sci, 1960, 5(1):17-61.
[12]  MOORE C, NEWMAN M E J. Epidemics and percolation in small-world networks[J]. Phys Rev E, 2000, 61(5):5678-5682.
[13]  PAN R K, KIVELA M, SARAMAKI J, et al. Using explosive percolation in analysis of real-world networks[J]. Phys Rev E, 2011, 83(4):046112.
[14]  ERD?S P, RéNYI A. On the evolution of random graphs Ⅱ[J]. Bull Inst Int Stat, 1961, 38(4):343-347.
[15]  de ARCANGELIS L, REDNER L, CONIGLIO A. Anomalous voltage distribution of random resistor networks and a new model for the backbone at the percolation threshold[J]. Phys Rev B, 1985, 31(7):4725-4727.
[16]  ROZENFELD H D, GALLOS L K, MAKSE H A. Explosive percolation in the human protein homology network[J]. Eur Phys J B, 2010, 75(3):305-310.
[17]  陈小龙, 杨春, 李志鹏, 等. 复杂网络爆炸渗流研究综述[J]. 电子科技大学学报, 2015, 44(1):12-21. CHEN Xiao-long, YANG Chun, LI Zhi-peng, et al. Review of explosive percolation of the complex networks[J]. Journal of University of Electronic Science and Technology of China, 2015, 44(1):12-21.
[18]  da COSTA R A, DOROGOVTSEV S N, GOLTSEV A V, et al. Mendes solution of the explosive percolation quest Ⅱ. infinite-order transition produced by the initial distributions of clusters[J]. Phys Rev E, 2015, 91(3):032140.
[19]  KRAOIVSKY P L, REDNER S, BEN-NAIM E. A kinetic view of statistical physics[M]. Cambridge, UK:Cambridge University Press, 2010.
[20]  da COSTA R A, DOROGOVTSEV S N, GOLTSEV A V, et al. Inverting the Achlioptas rule for explosive percolation[J]. Phys Rev E, 2015, 91(4):042130.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133