|
- 2018
基于卷积神经网络和密度分布特征的人数统计方法
|
Abstract:
在行人监控视频中,由于行人遮挡、场景光照变化,人群分布不均等因素的影响使得现有方法难以准确统计视频中人数。针对该问题,提出一种基于卷积神经网络和密度分布特征的人数统计方法。该方法首先将场景中的人群依据密度进行划分;对稀疏人群,使用Retinex算法将场景去噪后转换至HSV空间中对行人位置进行预判,并使用栅极损失函数分块训练卷积神经网络提取行人特征,实现对遮挡行人局部位置的识别;对密集人群,提取人群密度分布特征并使用多核回归函数估计人群数量。该算法在PETS2009、UCSD等数据集上进行了测试,实验结果表明所提算法具有更好的统计精度。
[1] | ANTONINI G, THIRAN J P. Counting pedestrians in video sequences using trajectory clustering[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2006, 16(8): 1008-1020. |
[2] | DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Conference on Computer Vision & Pattern Recognition. [S.l.]: IEEE, 2005. |
[3] | FORSYTH D. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(9): 1627-45. |
[4] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//International Conference on Neural Information Processing Systems. Doha, Qatar: Curran Associates Inc, 2012: 1097-1105. |
[5] | UIJLINGS J R R, SANDE K E A V D, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171. |
[6] | GEUSEBROEK J M, VAN D B R, SMEULDERS A W M, et al. Color invariance[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2001, 23(12): 1338- 1350. |
[7] | LEHMUSSOLA A, RUUSUVUORI P, SELINUMMI J, et al. Computational framework for simulating fluorescence microscope images with cell populations[J]. Medical Imaging IEEE Transactions on, 2007, 26(7): 1010-1016. |
[8] | KLOFT M, BREFELD U, SONNENBURG S. lp-Norm multiple Kernel learning[J]. Journal of Machine Learning Research(S1533-7928), 2011, 12(3): 953-997. |
[9] | CHEN K, GONG S, XIANG T, et al. Cumulative attribute space for age and crowd density estimation[C]//Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2013: 2467-2474. |
[10] | SUBBURAMAN V B, DESCAMPS A, CARINCOTTE C. Counting people in the crowd using a generic head detector[C]//IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance. [S.l.]: IEEE, 2012: 470-475. |
[11] | GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Ohio, USA: IEEE, 580-587. |
[12] | ANDREW L M, AWNI Y H, ANDREW Y N. Rectifier nonlinearities improve neural network acoustic models[C]// Proceedings of the 30th International Conference on Machine Learning. Atlanta, Georgia, USA: IMLC, 2013. |
[13] | 薛陈. 复杂场景下的人数统计系统[D]. 天津: 天津大学, 2012. XUE Chen. People counting system in complex scenario[D]. Tianjin: Tianjin University, 2012. |
[14] | LEMPITSKY V S, ZISSERMAN A. Learning to count objects in images[C]//Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc, 2010: 1324-1332. |
[15] | ZHANG C, LI H, WANG X, et al. Cross-scene crowd counting via deep convolutional neural networks[C]// Computer Vision and Pattern Recognition. [S.l.]: IEEE, 2015: 833-841. |
[16] | RAHMAN Z U, JOBSON D J, WOODELL G A. Retinex processing for automatic image enhancement[J]. Human Vision and Electronic Imaging VII, 2002, 13(1): 100-110. |
[17] | OPITZ M, WALTNER G, POIER G, et al. Grid loss: detecting occluded faces[M]//Computer Vision – ECCV. [S.l.]: Springer International Publishing, 2016. |
[18] | YANG S, LIAO X, BORASY U K. A pedestrian detection method based on the HOG-LBP feature and gentle AdaBoost[J]. International Journal of Advancements in Computing Technology, 2012, 4(19): 553-560. |
[19] | SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 2014, 15(1): 1929-1958. |
[20] | VILLAMIZAR M, GRABNER H, MORENO-NOGUER F, et al. Efficient 3D object detection using multiple pose-specific classifiers[C]//Proceedings of the British Machine Vision Conference. Dundee, Scotland, UK: BMVA Press, 2011. |
[21] | CHAN A B, VASCONCELOS N. Counting people with low-level features and Bayesian regression[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2160- 2177. |
[22] | CONTE D, FOGGIA P, PERCANNELLA G, et al. A method for counting moving people in video surveillance videos[J]. EURASIP Journal on Advances in Signal Processing, 2010, doi: 10.1155/2010/231240. |
[23] | RAO A S, GUBBI J, MARUSIC S, et al. Estimation of crowd density by clustering motion cues[J]. The Visual Computer, 2015, 31(11): 1533-1552. |