全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis, Spectroscopic Studies and X-Ray Diffraction of Heptacoordinated Mn(II) and Co(II) Complexes with Ligands Derived from Carbonohydrazide

DOI: 10.4236/ojic.2019.94004, PP. 35-52

Keywords: Carbonohydrazide, Manganese, Cobalt, Complex, X-Ray Diffraction

Full-Text   Cite this paper   Add to My Lib

Abstract:

The ligand 1-(1-(pyridin-2-yl)ethylidene)carbonohydrazide (H4L1) and 1-(pyridin-2-ylmethylene)carbonohydrazide (H4L2) were prepared by reaction of carbonohydrazide with 2-acetylpyridine or pyridine carbaldehyde respectively in a reflux methanol solution. The complexes are prepared by reaction of the ligand with the appropriate metal salt. These complexes are well characterized by elemental analysis, IR and UV spectroscopies and their structure were determined by single X-ray diffraction technic. In the crystal of the dinuclear complex [Mn2(H4L1)2(H2O)4]·Cl4, 1) each Mn(II) center is seven coordinated by two nitrogen atom and one carbonyl atom of the one ligand and one nitrogen atom and one carbonyl oxygen atom of another ligand molecule. The coordination sphere is completed by two water molecules. Each of the carbonyl oxygen atom acts as bridge between the two Mn(II) centers. In the mononuclear complex [Co(H4L2)(NO3)(H2O)2]·(NO3); 2) the Co(II) center is heptacoordinated. The ligand acts in tridentate fashion through two nitrogen atoms and one carbonyl oxygen atom. Two water molecules lie in the apical positions. One nitrate group acts in bidentate manner while the other nitrate group remains uncoordinated. In both complexes the coordination polyhedral are best described as a pentagonal bipyramid. The molecules are linked together in each case by multiple hydrogen bond interaction resulting in a three-dimensional network. The crystallographic data has been deposited in Cambridge Crystallographic Data Centre [CCDC No. 1944387 (complex 1) and 1944386 (complex 2)].

References

[1]  Ghosh, M., Layek, M., Fleck, M., Saha, R. and Bandyopadhyay, D. (2015) Synthesis, Crystal Structure and Antibacterial Activities of Mixed Ligand Copper(II) and Cobalt(II) Complexes of a NNS Schiff Base. Polyhedron, 85, 312-319.
https://doi.org/10.1016/j.poly.2014.08.014
[2]  Khorshidifard, M., Rudbari, H.A., Kazemi-Delikani, Z., Mirkhani, V. and Azadbakht, R. (2015) Synthesis, Characterization and X-Ray Crystal Structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) Complexes Derived from an Asymmetric Bidentate Schiff-Base Ligand at Ambient Temperature. Journal of Molecular Structure, 1081, 494-505.
https://doi.org/10.1016/j.molstruc.2014.10.071
[3]  Gorczyński, A., Zaranek, M., Witomska, S., Bocian, A., Stefankiewicz, A.R., Kubicki, M., Patroniak, V. and Pawluć, P. (2016) The Cobalt(II) Complex of a New Tridentate Schiff-Base Ligand as a Catalyst for Hydrosilylation of Olefins. Catalysis Communications, 78, 71-74.
https://doi.org/10.1016/j.catcom.2016.02.009
[4]  Jing, C., Wang, C., Yan, K., Zhao, K., Sheng, G., Qu, D., Niu, F., Zhu, H. and You, Z. (2016) Synthesis, Structures and Urease Inhibitory Activity of Cobalt(III) Complexes with Schiff Bases. Bioorganic & Medicinal Chemistry, 24, 270-276.
https://doi.org/10.1016/j.bmc.2015.12.013
[5]  Pogány, L., Moncol, J., Gál, M., Šalitroš, I. and Boča, R. (2017) Four Cobalt(III) Schiff Base Complexes—Structural, Spectroscopic and Electrochemical Studies. Inorganica Chimica Acta, 462, 23-29.
https://doi.org/10.1016/j.ica.2017.03.001
[6]  Wang, X.-W. and Zheng, Y.-Q. (2007) A Dinuclear Copper(II) Complex and a Zigzag Chain Iron(II) Polymer Based on the 4-Antipyrine Derived Schiff Base Ligands: The Hydroxylation and Redox Occurred under the Solvothermal Conditions. Inorganic Chemistry Communications, 10, 709-712.
https://doi.org/10.1016/j.inoche.2007.03.008
[7]  Zhang, E., Wei, Y., Huang, F., Yu, Q., Bian, H., Liang, H. and Lei, F. (2018) Synthesis, Crystal Structure and Bioactivity of Manganese Complexes with Asymmetric Chiral Schiff Base. Journal of Molecular Structure, 1155, 320-329.
https://doi.org/10.1016/j.molstruc.2017.11.017
[8]  Soliman, S.M., El-Faham, A., Elsilk, S.E. and Farooq, M. (2018) Two Heptacoordinated Manganese(II) Complexes of Giant Pentadentate s-Triazine Bis-Schiff Base Ligand: Synthesis, Crystal Structure, Biological and DFT Studies. Inorganica Chimica Acta, 479, 275-285.
https://doi.org/10.1016/j.ica.2018.04.043
[9]  Rathi, S., Maji, A., Singh, U.P. and Ghosh, K. (2019) Manganese (II) Complexes of Tridentate Ligands Having NNN Donors: Structure, DFT Calculations, Superoxide Dismutase, DNA Interaction, Nuclease and Protease Activity Studies. Inorganica Chimica Acta, 486, 261-273.
https://doi.org/10.1016/j.ica.2018.09.081
[10]  Sousa, J., Oliveira, D.R., Lomonaco, D., Correia, A.N., Sousa, C.P., Neto, P.L., Paulo, T.F., Mazzetto, S.E., Clemente, C.S. and Mele, G. (2019) Structural, Photophysical and Electrochemical Properties of a Novel Cardanol-Based Salophen Ligand and Its Mn(II) Complex. Journal of Molecular Structure, 1181, 279-286.
https://doi.org/10.1016/j.molstruc.2018.12.111
[11]  Gorczyński, A., Pakulski, D., Szymańska, M., Kubicki, M., Bułat, K., Łuczak, T. and Patroniak, V. (2016) Electrochemical Deposition of the New Manganese(II) Schiff-Base Complex on a Gold Template and Its Application for Dopamine Sensing in the Presence of Interfering Biogenic Compounds. Talanta, 149, 347-355.
https://doi.org/10.1016/j.talanta.2015.11.050
[12]  Egekenze, R.N., Gultneh, Y. and Butcher, R. (2018) Mn(III) and Mn(II) Complexes of Tridentate Schiff Base Ligands; Synthesis, Characterization, Structure, Electrochemistry and Catalytic Activity. Inorganica Chimica Acta, 478, 232-242.
https://doi.org/10.1016/j.ica.2018.01.027
[13]  Abdel-Rahman, L.H., Abu-Dief, A.M., Adam, M.S.S. and Hamdan, S.K. (2016) Some New Nano-Sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catalysis Letters, 146, 1373-1396.
https://doi.org/10.1007/s10562-016-1755-0
[14]  Al-Saeedi, S.I., Abdel-Rahman, L.H., Abu-Dief, A.M., Abdel-Fatah, S.M., Alotaibi, T.M., Alsalme, A.M. and Nafady, A. (2018) Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles, Catalysts, 8, 452.
https://doi.org/10.3390/catal8100452
[15]  Zhou, J.-L., Guo, L., Yu, W.-D., Zhang, Z.-H., Wang, Y. and Yan, J. (2019) Impact of Ligand Rotation: Synthesis, Crystal Structures and Third-Order Nonlinear Optical Properties of Mn(II), Cu(II) and Ni(II) Complexes with 5-diethylamino-2-((4-(phenyldiazenyl) phenylimino) methyl) Phenol. Inorganic Chemistry Communications, 99, 189-194.
https://doi.org/10.1016/j.inoche.2018.11.023
[16]  Choubey, S., Roy, S., Bhar, K., Ghosh, R., Mitra, P., Lin, C.-H., Ribas, J. and Ghosh, B.K. (2013) Syntheses, Structures, and Magnetic Properties of Terephthalato Bridged Dinuclear Copper(II) and Manganese(II) Complexes with a Tetradentate N-Donor Schiff Base. Polyhedron, 55, 1-9.
https://doi.org/10.1016/j.poly.2013.02.062
[17]  Elshafaie, A., Abdel-Rahman, L.H., Abu-Dief, A.M., Hamdan, S.K., Ahmed, A.M. and Ibrahim, E.M.M. (2018) Electric, Thermoelectric and Magnetic Properties of Nickel(II) Imine Nanocomplexes. NANO: Brief Reports and Reviews, 13, Article ID: 1850074.
https://doi.org/10.1142/S1793292018500741
[18]  Raju, V., Kumar, R.S., Tharakeswar, Y. and Kumar, S.K.A. (2019) A Multifunctional Schiff-Base as Chromogenic Chemosensor for Mn2+ and Fluorescent Chemosensor for Zn2+ in Semi-Aqueous Environment. Inorganica Chimica Acta, 493, 49-56.
https://doi.org/10.1016/j.ica.2019.04.053
[19]  Abu-Dief, A.M., Díaz-Torres, R., Sañudo, E.C., Abdel-Rahman, L.H. and Aliaga-Alcalde, N. (2013) Novel Sandwich Triple-Decker Dinuclear NdIII-(bis-N,N’-p-bromo-salicylideneamine-1,2-diaminobenzene) Complex. Polyhedron, 64, 203-208.
https://doi.org/10.1016/j.poly.2013.04.010
[20]  Li, H., Xi, D., Niu, Y., Wang, C., Xu, F., Liang, L. and Xu, P. (2019) Design, Synthesis and Biological Evaluation of Cobalt(II)-Schiff Base Complexes as ATP-Non-competitive MEK1 Inhibitors. Journal of Inorganic Biochemistry, 195, 174-181.
https://doi.org/10.1016/j.jinorgbio.2019.03.022
[21]  Abdel-Rahmana, L.H., Abu-Dief, A.M., Aboelez, M.O. and Abdel-Mawgoud, A.A.H. (2017) DNA Interaction, Antimicrobial, Anticancer Activities and Molecular Docking Study of Some New VO(II), Cr(III), Mn(II) and Ni(II) Mononuclear Chelates Encompassing Quaridentate Imine Ligand. Journal of Photochemistry & Photobiology, B: Biology, 170, 271-285.
https://doi.org/10.1016/j.jphotobiol.2017.04.003
[22]  Abdel-Rahman, L.H., Abu-Dief, A.M., Shehata, M.R., Atlam, F.M. and Abdel-Maw-goud, A.A.H. (2019) Some New Ag(I), VO(II) and Pd(II) Chelates Incorporating Tridentate Imine Ligand: Design, Synthesis, Structure Elucidation, Density Functional Theory Calculations for DNA Interaction, Antimicrobial and Anticancer Activities and Molecular Docking Studies. Applied Organometallic Chemistry, 33, e4699.
https://doi.org/10.1002/aoc.4699
[23]  Pordea, A., Mathis, D. and Ward, T.R. (2009) Incorporation of Biotinylated Manganese-Salen Complexes into Streptavidin: New Artificial Metalloenzymes for Enantioselective Sulfoxidation. Journal of Organometallic Chemistry, 694, 930-936.
https://doi.org/10.1016/j.jorganchem.2008.11.023
[24]  Rondot, L., Girgenti, E., Oddon, F., Marchi-Delapierre, C., Jorge-Robin, A. and Ménage, S. (2016) Catalysis without a Headache: Modification of Ibuprofen for the Design of Artificial Metalloenzyme for Sulfide Oxidation. Journal of Molecular Catalysis A: Chemical, 416, 20-28.
https://doi.org/10.1016/j.molcata.2016.02.015
[25]  McKee, V. (1993) Macrocyclic Complexes as Models for Nonporphine Metalloproteins. Advances in Inorganic Chemistry, 40, 323-410.
https://doi.org/10.1016/S0898-8838(08)60186-5
[26]  Horrocks, W.D. and Burlone, D.A. (1979) Metalloprotein Models, Location of the Magnetic Axes in Low-Symmetry Complexes. Single Crystal Electron Paramagnetic Resonance, Magnetic Susceptibility Anisotropy, and Angular Overlap Ligand Field Calculations on a Complex Containing the Distorted Tetrahedral CoIIN2O2 Coordination Unit, Bis(N-isopropylsalicyclaldiminato)cobalt(II). Inorganica Chimica Acta, 35, 165-175.
https://doi.org/10.1016/S0020-1693(00)93435-2
[27]  Bhar, K., Sutradhar, D., Choubey, S., Ghosh, R., Lin, C.-H., Ribas, J. and Ghosh, B.K. (2013) Hexa- and Hepta-Coordinated Manganese(II) Dicyanamide Complexes Containing a Tetradentate N-Donor Schiff Base: Syntheses, Composition Tailored Architectures and Magnetic Properties. Journal of Molecular Structure, 1051, 107-114.
https://doi.org/10.1016/j.molstruc.2013.07.029
[28]  Martinez-Bulit, P., Garza-Ortíz, A., Mijangos, E., Barrón-Sosa, L., Sánchez-Bartéz, F., Gracia-Mora, I., Flores-Parra, A., Contreras, R., Reedijk, J. and Barba-Behrens, N. (2015) 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine Coordination Compounds with Cobalt(II), Nickel(II), Copper(II), and Zinc(II): Synthesis, Spectroscopic Characterization, X-Ray Study and in Vitro Cytotoxicity. Journal of Inorganic Biochemistry, 142, 1-7.
https://doi.org/10.1016/j.jinorgbio.2014.09.007
[29]  Gökçe, C., Dilek, N. and Gup, R. (2015) Seven Coordinated Cobalt(II) Complexes with 2,6-Diacetylpyridine Bis(4-acylhydrazone) Ligands: Synthesis, Characterization, DNA-Binding and Nuclease Activity. Inorganica Chimica Acta, 432, 213-220.
https://doi.org/10.1016/j.ica.2015.03.040
[30]  Baffert, C., Collomb, M.-N., Deronzier, A., Kjærgaard-Knudsen, S., Latour, J.-M., Lund, K.H., McKenzie, C.J., Mortensen, M., Nielsen, L.P. and Thorup, N. (2003) Biologically Relevant Mono- and Di-Nuclear Manganese II/III/IV Complexes of Mononegative Pentadentate Ligands. Dalton Transaction, 9, 1765-1772.
https://doi.org/10.1039/b300823a
[31]  Waldo, G.S. and Penner-Hahn, J.E. (1995) Mechanism of Manganese Catalase Peroxide Disproportionation: Determination of Manganese Oxidation States during Turnover. Biochemistry, 34, 1507-1512.
https://doi.org/10.1021/bi00005a006
[32]  Zahran, Z.N., Chooback, L., Copeland, D.M., West, A.H. and Richter-Addo, G.B. (2008) Crystal Structures of Manganese- and Cobalt-Substituted Myoglobin in Complex with NO and Nitrite Reveal Unusual Ligand Conformations. Journal of Inorganic Biochemistry, 102, 216-233.
https://doi.org/10.1016/j.jinorgbio.2007.08.002
[33]  Türkoğlu, S. and Özer, İ. (1992) Possible Involvement of Manganese in the Catalytic Mechanism of Bovine Liver Arginase. International Journal of Biochemistry, 24, 937-939.
https://doi.org/10.1016/0020-711X(92)90100-F
[34]  Shiga, T. and Oshio, H. (2007) Syntheses, Structures and Magnetic Properties of Mixed-Valence Pentanuclear [Mn3IIMn2III] and Hexanuclear [Co4IICo2III] Complexes Derived from 3-Formylsalicylic Acid. Polyhedron, 26, 1881-1884.
https://doi.org/10.1016/j.poly.2006.09.026
[35]  Nayak, M., Hazra, S., Lemoine, P., Koner, R., Lucas, C.R. and Mohanta, S. (2008) Self-Assembled [2×1+1×2] Heterotetranuclear CuII3MnII/CuII3CoII and [2×2+1×3] Heptanuclear CuII7 Compounds Derived from N,N’-o-phenylenebis(3-ethoxysali-cylaldimine): Structures and Magnetic Properties. Polyhedron, 27, 1201-1213.
https://doi.org/10.1016/j.poly.2007.12.010
[36]  Bar, A.K., Pichon, C. and Sutter, J.-P. (2016) Magnetic Anisotropy in Two- to Eight-Coordinated Transition-Metal Complexes: Recent Developments in Molecular Magnetism. Coordination Chemistry Reviews, 308, 346-380.
https://doi.org/10.1016/j.ccr.2015.06.013
[37]  Dieng, M., Diouf, O., Gaye, M., Sall, A.S., Pérez-Lourido, P., Valencia, L., Caneschi, A. and Sorace, L. (2013) Polynuclear Nickel(II) Complexes with Salicylaldimine Derivative Ligands. Inorganica Chimica Acta, 394, 741-746.
https://doi.org/10.1016/j.ica.2012.09.037
[38]  Sow, M.M., Diouf, O., Gaye, M., Sall, A.S., Pérez-Lourido, P., Valencia-Matarranz, L., Castro, G., Caneschi, A. and Sorace, L. (2013) Synthesis, Spectral Characterization and X-Ray Crystal Structure of Fe(III) and Co(III) Complexes with an Acyclic Schiff Base Ligand. Inorganica Chimica Acta, 406, 171-175.
https://doi.org/10.1016/j.ica.2013.07.018
[39]  Sow, M.M., Diouf, O., Gaye, M., Salam-Sall, A., Castro, G., Pérez-Lourido, P., Valencia, L., Caneschi, A. and Sorace, L. (2013) Sheets of Tetranuclear Ni(II) [2 × 2] Square Grids Structure with Infinite Orthogonal Two-Dimensional Water-Chlorine Chains. Crystal Growth & Design, 13, 4172-4176.
https://doi.org/10.1021/cg400885f
[40]  Sheldrick, G.M. (1997) SHELXTL 97. Program for the Refinement of Crystal Structures. University of Göttingen, Göttingen.
[41]  Farrugia, L.J. (1997) It ORTEP-3 for Windows—A Version of It ORTEP-III with a Graphical User Interface (GUI). Journal of Applied Crystallography, 30, 565.
https://doi.org/10.1107/S0021889897003117
[42]  Singh, A.K., Pandey, O.P. and Sengupta, S.K. (2013) Synthesis, Spectral and Antimicrobial Activity of Zn(II) Complexes with Schiff Bases Derived from 2-Hydrazino-5-[Substituted phenyl]-1,3,4-Thiadiazole and Benzaldehyde/2-Hydroxyacetophe-none/Indoline-2,3-Dione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 113, 393-399.
https://doi.org/10.1016/j.saa.2013.04.045
[43]  Abdel-Rahman, L.H., Abu-Dief, A.M., El-Khatib, R.M. and Abdel-Fatah, S.M. (2016) Sonochemical Synthesis, DNA Binding, Antimicrobial Evaluation and in Vitro Anticancer Activity of Three New Nano-Sized Cu(II), Co(II) and Ni(II) Chelates Based on Tridentate NOO Imine Ligands as Precursors for Metal Oxides. Journal of Photochemistry and Photobiology B: Biology, 162, 298-308.
https://doi.org/10.1016/j.jphotobiol.2016.06.052
[44]  Abdel-Rahman, L.H., Ismail, N.M., Ismael, M., Abu-Dief, A.M. and Ahmed, E.A. (2017) Synthesis, Characterization, DFT Calculations and Biological Studies of Mn(II), Fe(II), Co(II) and Cd(II) Complexes Based on a Tetradentate ONNO Donor Schiff Base Ligand. Journal of Molecular Structure, 1134, 851-862.
https://doi.org/10.1016/j.molstruc.2017.01.036
[45]  Kumar, D.S. and Alexander, V. (1995) Macrocyclic Complexes of Lanthanides in Identical Ligand Frameworks Part 1. Synthesis of Lanthanide(III) and Yttrium(III) Complexes of an 18-Membered Dioxatetraaza Macrocycle. Inorganica Chimica Acta, 238, 63-71.
https://doi.org/10.1016/0020-1693(95)04687-5
[46]  Geary, W.J. (1971) The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coordination Chemistry Reviews, 7, 81-122.
https://doi.org/10.1016/S0010-8545(00)80009-0
[47]  Sarr, M., Diop, M., Thiam, E.I., Barry, A.H., Gaye, M. and Retailleau, P. (2018) Crystal Structure of Aquachlorido(nitrato-κ2O,O’)[1-(pyridin-2-yl-κN)-2(pyridin-2-ylmethylidene-κN)hydrazine-κN2]manganase(II). Acta Crystallographica Section E: Crystallographic Communications, 74, 450-453.
https://doi.org/10.1107/S2056989018003493
[48]  Schleife, F., Rodenstein, A., Kirmse, R. and Kersting, B. (2011) Seven-Coordinate Mn(II) and Co(II) Complexes of the Pentadentate Ligand 2,6-Diacetyl-4-Carboxy-methyl-Pyridine Bis(benzoylhydrazone): Synthesis, Crystal Structure and Magnetic Properties. Inorganica Chimica Acta, 374, 521-527.
https://doi.org/10.1016/j.ica.2011.02.064
[49]  Compton, R.G., Barghout, R., Eklund, J.C. and Fisher, A.C. (1993) Organometallic Photoelectrochemistry: Oxidation of fac-Tricarbonylchloro[bis(diphenylphosphino) methane] Manganese(I). Journal of Physical Chemistry, 97, 1661-1664.
https://doi.org/10.1021/j100110a031

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133