全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

超声波作用下煤中甲烷的渗流特性
Seepage Characteristics of Methane in Coal under Ultrasonic Wave

DOI: 10.12677/APF.2019.93003, PP. 17-23

Keywords: 甲烷,超声波,功率,渗透率
Methane
, Ultrasonic Wave, Power, Permeability

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了提高煤的渗透率,采用自主研发的超声波作用下煤层气渗流实验系统研究了超声波作用时间、功率对甲烷渗流特性的影响。实验得出:超声波作用前后煤的渗透率随平均有效应力、有效轴压的增加而迅速减小,呈负指数关系;当应力恒定时,随着时间的增加,超声波作用下煤的渗透率明显增加,后趋于稳定;当超声波频率为25 kHz时,随着功率的增加,煤体裂隙的扩展范围增大,煤的渗透率增加,且超声波作用后渗透率与功率呈线性关系;超声波提高煤的渗透率是空化效应、机械作用和热效应共同作用的结果。
In order to improve the permeability of coal, the seepage characteristics of coalbed methane under different treatment time and power of ultrasonic wave were studied by the self-developed experi-mental system of coalbed methane seepage under ultrasonic wave. The results show that the per-meability of coal decreases rapidly with the increase of the average effective stress and the effective axial pressure before and after the ultrasonic treatment, which shows a negative exponential rela-tion. When the stress is constant, the permeability of coal increases significantly with time, and then tends to be stable. As the ultrasonic frequency is 25 kHz, the expansion area of cracks increase and the permeability of coal increases with the increase of ultrasonic power. And the ratio of permeabil-ity before and after ultrasonic treatment is linear with ultrasonic power. The permeability of coal increased by ultrasonic wave is the result of cavitation effect, mechanical effect and thermal effect.

References

[1]  冯增朝. 低渗透煤层瓦斯强化抽采理论及应用[M]. 北京: 科学出版社, 2008.
[2]  Zhou, F., Xia, T., Wang, X., Zhang, Y., Sun, Y. and Liu, J. (2016) Recent Developments in Coal Mine Methane Extraction and Utilization in China: A Review. Journal of Natural Gas Science and Engineering, 31, 437-458.
https://doi.org/10.1016/j.jngse.2016.03.027
[3]  姚成林. 煤层气综合利用趋势研究[J]. 矿业安全与环保, 2016, 43(1): 96-99.
[4]  申宝宏, 刘见中, 雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术, 2015, 43(2): 1-4.
[5]  张永民, 邱爱慈, 秦勇. 电脉冲可控冲击波煤储层增透原理与工程实践[J]. 煤炭科学技术, 2017, 45(9): 79-85.
[6]  李恒乐, 秦勇, 张永民, 等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报, 2015, 40(4): 915-921.
[7]  易俊. 声震法提高煤层气抽采率的机理及技术原理研究[D]: [博士学位论文]. 重庆: 重庆大学, 2007.
[8]  姜永东, 李业, 崔悦震, 等. 声场作用下煤储层渗透性试验研究[J]. 煤炭学报, 2017, 42(S1): 154-159.
[9]  姜永东, 宋晓, 刘浩, 等. 大功率声波作用下煤层气吸附特性及其模型[J]. 煤炭学报, 2014, 39(S1): 152-157.
[10]  姜永东, 宋晓, 崔悦震, 等. 声场作用煤中甲烷解吸扩散的特性[J]. 煤炭学报, 2015, 40(3): 623-628.
[11]  Jiang, Y.D., Song, X., Liu, H., et al. (2015) Laboratory Measurements of Methane Desorption on Coal during Acoustic Stimulation. International Journal of Rock Mechanics and Mining Sciences, 78, 10-18.
https://doi.org/10.1016/j.ijrmms.2015.04.019
[12]  李晓红, 冯明涛, 周东平, 等. 空化水射流声震效应强化煤层瓦斯解吸渗流的实验[J]. 重庆大学学报, 2011, 34(4): 1-5.
[13]  赵丽娟, 秦勇. 超声波作用对改善煤储层渗透性的实验分析[J]. 天然气地球科学, 2014, 25(5): 747-752.
[14]  赵丽娟. 超声波作用下的煤层气吸附-解吸规律实验[J]. 地质勘探, 2016, 32(2): 21-25.
[15]  于永江, 张春会, 等. 超声波干扰提高煤层气抽放率的机理[J]. 辽宁工程技术大学学报, 2008, 42(6): 805-808.
[16]  Yu, G., Zhai, C., Qin, L., et al. (2018) Changes to Coal Pores by Ultrasonic Wave Excitation of Different Powers. Journal of China University of Mining & Technology, 47, 264-270 and 322.
[17]  Ozkan, S.G. (2018) A Review of Simultaneous Ultrasound-Assisted Coal Flotation. Journal of Mining & Environment, 9, 679-689.
[18]  宋洋, 吴贝宁. 机械振动作用下含瓦斯煤岩渗透率演化规律研究[J]. 矿业安全与环保, 2018, 45(1): 6-10.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133