|
Comparison of Splitting Methods for Deterministic/Stochastic Gross–Pitaevskii EquationDOI: https://doi.org/10.3390/mca24030076 Abstract: In this paper, we discuss the different splitting approaches to numerically solve the Gross–Pitaevskii equation (GPE). The models are motivated from spinor Bose–Einstein condensate (BEC). This system is formed of coupled mean-field equations, which are based on coupled Gross–Pitaevskii equations. We consider conservative finite-difference schemes and spectral methods for the spatial discretisation. Furthermore, we apply implicit or explicit time-integrators and combine these schemes with different splitting approaches. The numerical solutions are compared based on the conservation of the L 2 -norm with the analytical solutions. The advantages of the novel splitting methods for large time-domains are based on the asymptotic conservation of the solution of the soliton’s applications. Furthermore, we have the benefit of larger local time-steps and therefore obtain faster numerical schemes. View Full-Tex
|