Alzheimer’s disease (AD) is a neurodegenerative disease characterized by
the progressive loss of cognitive functions in affected individuals. Brain
tissue pathology is associated with the formation of senile plaques which
result from the over-production of amyloid β (Aβ), due to the cleavage of a
membrane bound glycoprotein. It is unclear what causes AD and its associated
pathologies, but age and genetic predisposition play an import role in the
likelihood of disease development. Studies have shown that the reactivation of
latent herpes simplex virus 1 (HSV-1) infection can lead to the neuropathy of
acute herpes simplex encephalitis (HSE), which causes similar symptoms to AD.
HSV-1 infection is a known risk factor for the development of AD, but no study
has determined a definitive causal relationship. Using the Qiagen Ingenuity Pathway Analysis (IPA) tool, the
inhibitory relationship between therapeutics for AD and HSV-1 were
explored. Thirteen drugs developed to decrease Aβ buildup in AD and 32 drugs that act as HSV antivirals were
retrieved from the data in the Qiagen Knowledge Base. These drugs were analyzed
displayed as two separate networks. While many promising Aβ aggregation-targeting drugs have been discontinued due to lack of
efficacy, HSV drugs could serve as potential therapeutics for those with AD.
This review aims to describe new insights on how HSV-1 relates to the
development of AD and highlight the mechanism of action of Aβ-related drugs and HSV drugs in the
context of AD. With HSV-1 being a likely candidate for the causation of AD,
there is a need to study the effects of HSV antiviral drugs on those who have
AD.
References
[1]
Weller, J. and Budson, A. (2018) Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000Research, 7, Article No. 1161.
https://doi.org/10.12688/f1000research.14506.1
[2]
Crous-Bou, M., Minguillon, C., Gramunt, N. and Molinuevo, J.L. (2017) Alzheimer’s Disease Prevention: From Risk Factors to Early Intervention. Alzheimer’s Research & Therapy, 9, Article No. 71. https://doi.org/10.1186/s13195-017-0297-z
[3]
Yeo, J.M., Waddell, B., Khan, Z. and Pal, S. (2015) A Systematic Review and Meta-Analysis of 18F-Labeled Amyloid Imaging in Alzheimer’s Disease. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 1, 5-13.
https://doi.org/10.1016/j.dadm.2014.11.004
[4]
Blennow, K. and Zetterberg, H. (2018) Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. Journal of Internal Medicine, 284, 643-663.
https://doi.org/10.1111/joim.12816
[5]
Birks, J. (2006) Cholinesterase Inhibitors for Alzheimer’s Disease. Cochrane Database of Systematic Reviews, No. 1, CD005593.
https://doi.org/10.1002/14651858.CD005593
[6]
Wilkinson, D.G., Francis, P.T., Schwam, E. and Payne-Parrish, J. (2004) Cholinesterase Inhibitors Used in the Treatment of Alzheimer’s Disease: The Relationship between Pharmacological Effects and Clinical Efficacy. Drugs & Aging, 21, 453-478.
https://doi.org/10.2165/00002512-200421070-00004
[7]
Li, F. and Tsien, J.Z. (2009) Memory and the NMDA Receptors. The New England Journal of Medicine, 361, 302-303. https://doi.org/10.1056/NEJMcibr0902052
[8]
Liu, J., Chang, L., Song, Y., Li, H. and Wu, Y. (2019) The Role of NMDA Receptors in Alzheimer’s Disease. Frontiers in Neuroscience, 13, 43.
https://doi.org/10.3389/fnins.2019.00043
[9]
Brothers, H.M., Gosztyla, M.L. and Robinson, S.R. (2018) The Physiological Roles of Amyloid-β Peptide Hint at New Ways to Treat Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10, 118. https://doi.org/10.3389/fnagi.2018.00118
[10]
O’Brien, R.J. and Wong, P.C. (2011) Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual Review of Neuroscience, 34, 185-204.
https://doi.org/10.1146/annurev-neuro-061010-113613
[11]
Chow, V.W., Mattson, M.P., Wong, P.C. and Gleichmann, M. (2010) An Overview of APP Processing Enzymes and Products. Neuromolecular Medicine, 12, 1-12.
https://doi.org/10.1007/s12017-009-8104-z
[12]
Panza, F., Lozupone, M., Logroscino, G. and Imbimbo, B.P. (2019) A Critical Appraisal of Amyloid-β-Targeting Therapies for Alzheimer Disease. Nature Reviews Neurology, 15, 73-88. https://doi.org/10.1038/s41582-018-0116-6
[13]
Van Cauwenberghe, C., Van Broeckhoven, C. and Sleegers, K. (2016) The Genetic Landscape of Alzheimer Disease: Clinical Implications and Perspectives. Genetics in Medicine, 18, 421-430. https://doi.org/10.1038/gim.2015.117
[14]
Murphy, M.P. and LeVine, H. (2010) Alzheimer’s Disease and the Amyloid-Beta Peptide. Journal of Alzheimer’s Disease, 19, 311-323.
https://doi.org/10.3233/JAD-2010-1221
[15]
Gendreau, K.L. and Hall, G.F. (2013) Tangles, Toxicity, and Tau Secretion in AD—New Approaches to a Vexing Problem. Frontiers in Neurology, 4, 160.
https://doi.org/10.3389/fneur.2013.00160
[16]
Mephon-Gaspard, A., Boca, M., Pioche-Durieu, C., Desforges, B., Burgo, A., Hamon, L., et al. (2016) Role of Tau in the Spatial Organization of Axonal Microtubules: Keeping Parallel Microtubules Evenly Distributed Despite Macromolecular Crowding. Cellular and Molecular Life Sciences, 73, 3745-3760.
https://doi.org/10.1007/s00018-016-2216-z
[17]
Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., et al. (2019) Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Frontiers in Aging Neuroscience, 11, 204.
https://doi.org/10.1007/s00018-016-2216-z
[18]
Binder, L.I., Guillozet-Bongaarts, A.L., Garcia-Sierra, F. and Berry, R.W. (2005) Tau, Tangles, and Alzheimer’s Disease. Biochimica et Biophysica Acta, 1739, 216-223.
https://doi.org/10.1016/j.bbadis.2004.08.014
[19]
Friedhoff, P., von Bergen, M., Mandelkow, E.M. and Mandelkow, E. (2000) Structure of Tau Protein and Assembly into Paired Helical Filaments. Biochimica et Biophysica Acta, 1502, 122-132. https://doi.org/10.1016/S0925-4439(00)00038-7
[20]
Mo, J.A., Lim, J. H., Sul, A.R., Lee, M., Youn, Y.C. and Kim, H.J. (2015) Cerebrospinal Fluid Beta-Amyloid1-42 Levels in the Differential Diagnosis of Alzheimer’s Disease—Systematic Review and Meta-Analysis. PLoS ONE, 10, e0116802.
https://doi.org/10.1371/journal.pone.0116802
[21]
Tapiola, T., Alafuzoff, I., Herukka, S.K., Parkkinen, L., Hartikainen, P., Soininen, H. and Pirttila, T. (2009) Cerebrospinal Fluid {beta}-Amyloid 42 and Tau Proteins as Biomarkers of Alzheimer-Type Pathologic Changes in the Brain. Archives of Neurolog, 66, 382-389. https://doi.org/10.1001/archneurol.2008.596
[22]
Kumar, D.K., Choi, S. H., Washicosky, K.J., Eimer, W.A., Tucker, S., Ghofrani, J., et al. (2016) Amyloid-Beta Peptide Protects against Microbial Infection in Mouse and Worm Models of Alzheimer’s Disease. Science Translational Medicine, 8, 340ra72.
https://doi.org/10.1126/scitranslmed.aaf1059
[23]
Shi, H.B., Tang, B., Liu, Y.W., Wang, X.F. and Chen, G.J. (2015) Alzheimer Disease and Cancer Risk: A Meta-Analysis. Journal of Cancer Research and Clinical Oncology, 141, 485-494. https://doi.org/10.1007/s00432-014-1773-5
[24]
Stone, J. (2008) What Initiates the Formation of Senile Plaques? The Origin of Alzheimer-Like Dementias in Capillary Haemorrhages. Medical Hypotheses, 71, 347-359.
https://doi.org/10.1016/j.mehy.2008.04.007
[25]
Johnson, V.E., Stewart, W. and Smith, D.H. (2012) Widespread Tau and Amyloid-Beta Pathology Many Years after a Single Traumatic Brain Injury in Humans. Brain Pathology, 22, 142-149. https://doi.org/10.1111/j.1750-3639.2011.00513.x
[26]
Puzzo, D. and Arancio, O. (2013) Amyloid-Beta Peptide: Dr. Jekyll or Mr. Hyde? Journal of Alzheimer’s Disease, 33, S111-120.
https://doi.org/10.3233/JAD-2012-129033
Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A. Y., Seubert, P., et al. (1992) Mutation of the Beta-Amyloid Precursor Protein in Familial Alzheimer’s Disease Increases Beta-Protein Production. Nature, 360, 672-674.
https://doi.org/10.1038/360672a0
[29]
Wolfe, M.S. (2014) Unlocking Truths of Gamma-Secretase in Alzheimer’s Disease: What Is the Translational Potential? Future Neurology, 9, 419-429.
https://doi.org/10.2217/fnl.14.35
[30]
Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., et al. (1996) Familial Alzheimer’s Disease-Linked Presenilin 1 Variants Elevate Aβ1-42/1-40 Ratio in Vitro and in Vivo. Neuron, 17, 1005-1013.
https://doi.org/10.1016/S0896-6273(00)80230-5
[31]
Wu, L. and Zhao, L. (2016) ApoE2 and Alzheimer’s Disease: Time to Take a Closer Look. Neural Regeneration Research, 11, 412-413.
https://doi.org/10.4103/1673-5374.179044
[32]
Liu, C.C., Liu, C.C., Kanekiyo, T., Xu, H. and Bu, G. (2013) Apolipoprotein E and Alzheimer Disease: Risk, Mechanisms and Therapy. Nature Reviews Neurology, 9, 106-118. https://doi.org/10.1038/nrneurol.2012.263
[33]
Huang, Y. and Mahley, R.W. (2014) Apolipoprotein E: Structure and Function in Lipid Metabolism, Neurobiology, and Alzheimer’s Diseases. Neurobiology of Disease, 72, 3-12. https://doi.org/10.1016/j.nbd.2014.08.025
[34]
Harris, F.M., Brecht, W.J., Xu, Q., Tesseur, I., Kekonius, L., Wyss-Coray, T., et al. (2003) Carboxyl-Terminal-Truncated Apolipoprotein E4 Causes Alzheimer’s Disease-Like Neurodegeneration and Behavioral Deficits in Transgenic Mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 10966-10971. https://doi.org/10.1073/pnas.1434398100
[35]
Brecht, W.J., Harris, F.M., Chang, S., Tesseur, I., Yu, G. Q., Xu, Q., et al. (2004) Neuron-Specific Apolipoprotein E4 Proteolysis Is Associated with Increased Tau Phosphorylation in Brains of Transgenic Mice. Journal of Neuroscience, 24, 2527-2534.
https://doi.org/10.1523/JNEUROSCI.4315-03.2004
[36]
Jones, P.B., Adams, K.W., Rozkalne, A., Spires-Jones, T.L., Hshieh, T.T., Hashimoto, T., et al. (2011) Apolipoprotein E: Isoform Specific Differences in Tertiary Structure and Interaction with Amyloid-Beta in Human Alzheimer Brain. PLoS ONE, 6, e14586. https://doi.org/10.1371/journal.pone.0014586
[37]
Tharp, W.G. and Sarkar, I.N. (2013) Origins of Amyloid-Beta. BMC Genomics, 14, 290. https://doi.org/10.1186/1471-2164-14-290
[38]
Southam, K.A., Stennard, F., Pavez, C. and Small, D.H. (2019) Knockout of Amyloid beta Protein Precursor (APP) Expression Alters Synaptogenesis, Neurite Branching and Axonal Morphology of Hippocampal Neurons. Neurochemical Research, 44, 1346-1355. https://doi.org/10.1007/s11064-018-2512-0
[39]
Zheng, H., Jiang, M., Trumbauer, M.E., Sirinathsinghji, D.J., Hopkins, R., Smith, D. W., et al. (1995) Beta-Amyloid Precursor Protein-Deficient Mice Show Reactive Gliosis and Decreased Locomotor Activity. Cell, 81, 525-531.
https://doi.org/10.1016/0092-8674(95)90073-X
[40]
Soscia, S.J., Kirby, J. E., Washicosky, K.J., Tucker, S.M., Ingelsson, M., Hyman, B., et al. (2010) The Alzheimer’s Disease-Associated Amyloid Beta-Protein Is an Antimicrobial Peptide. PLoS ONE, 5, e9505. https://doi.org/10.1371/journal.pone.0009505
[41]
Spitzer, P., Condic, M., Herrmann, M., Oberstein, T.J., Scharin-Mehlmann, M., Gilbert, D.F., et al. (2016) Amyloidogenic Amyloid-Beta-Peptide Variants Induce Microbial Agglutination and Exert Antimicrobial Activity. Scientific Reports, 6, Article No. 32228. https://doi.org/10.1038/srep32228
[42]
Kagan, B.L., Jang, H., Capone, R., Teran Arce, F., Ramachandran, S., Lal, R. and Nussinov, R. (2012) Antimicrobial Properties of Amyloid Peptides. Molecular Pharmaceutics, 9, 708-717. https://doi.org/10.1038/srep32228
[43]
Fiala, M., Cribbs, D.H., Rosenthal, M. and Bernard, G. (2007) Phagocytosis of Amyloid-Beta and Inflammation: Two Faces of Innate Immunity in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 11, 457-463.
https://doi.org/10.3233/JAD-2007-11406
[44]
Condic, M., Oberstein, T.J., Herrmann, M., Reimann, M.C., Kornhuber, J., Maler, J.M. and Spitzer, P. (2014) N-Truncation and Pyroglutaminylation Enhances the Opsonizing Capacity of Abeta-Peptides and Facilitates Phagocytosis by Macrophages and Microglia. Brain, Behavior, and Immunity, 41, 116-125.
https://doi.org/10.1016/j.bbi.2014.05.003
[45]
Wozniak, M.A., Mee, A.P. and Itzhaki, R.F. (2009) Herpes Simplex Virus Type 1 DNA Is Located within Alzheimer’s Disease Amyloid Plaques. Journal of Pathology, 217, 131-138. https://doi.org/10.1002/path.2449
Ball, M.J. (1982) Limbic Predilection in Alzheimer Dementia: Is Reactivated Herpesvirus Involved? Canadian Journal of Neurological Sciences, 9, 303-306.
https://doi.org/10.1017/S0317167100044115
[48]
Harris, S.A. and Harris, E.A. (2018) Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10, 48. https://doi.org/10.3389/fnagi.2018.00048
[49]
Fleischer, C.C. and Payne, C.K. (2014) Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Accounts of Chemical Research, 47, 2651-2659. https://doi.org/10.1021/ar500190q
[50]
Monopoli, M.P., Aberg, C., Salvati, A. and Dawson, K.A. (2012) Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nature Nanotechnology, 7, 779-786. https://doi.org/10.1038/nnano.2012.207
[51]
Ezzat, K., Pernemalm, M., Palsson, S., Roberts, T.C., Jarver, P., Dondalska, A., et al. (2019) The Viral Protein Corona Directs Viral Pathogenesis and Amyloid Aggregation. Nature Communications, 10, Article No. 2331.
https://doi.org/10.1038/s41467-019-10192-2
[52]
Itzhaki, R.F., Lin, W.R., Shang, D., Wilcock, G.K., Faragher, B. and Jamieson, G.A. (1997) Herpes Simplex Virus Type 1 in Brain and Risk of Alzheimer’s Disease. Lancet, 349, 241-244. https://doi.org/10.1016/S0140-6736(96)10149-5
[53]
Koelle, D.M., Magaret, A., Warren, T., Schellenberg, G.D. and Wald, A. (2010) APOE Genotype Is Associated with Oral Herpetic Lesions but Not Genital or Oral Herpes Simplex Virus Shedding. Sexually Transmitted Infections, 86, 202-206.
https://doi.org/10.1136/sti.2009.039735
[54]
Furlong, D., Swift, H. and Roizman, B. (1972). Arrangement of Herpesvirus Deoxyribonucleic Acid in the Core. Journal of Virology, 10, 1071-1074.
https://doi.org/10.1128/JVI.10.5.1071-1074.1972
[55]
Homa, F.L. and Brown, J.C. (1997) Capsid Assembly and DNA Packaging in Herpes Simplex Virus. Reviews in Medical Virology, 7, 107-122.
https://doi.org/10.1002/(SICI)1099-1654(199707)7:2<107::AID-RMV191>3.0.CO;2-M
[56]
Mingo, R.M., Han, J., Newcomb, W.W. and Brown, J.C. (2012) Replication of Herpes Simplex Virus: Egress of Progeny Virus at Specialized Cell Membrane Sites. Journal of Virology, 86, 7084-7097. https://doi.org/10.1128/JVI.00463-12
[57]
Koganti, R., Yadavalli, T. and Shukla, D. (2019) Current and Emerging Therapies for Ocular Herpes Simplex Virus Type-1 Infections. Microorganisms, 7, 492.
https://doi.org/10.3390/microorganisms7100429
[58]
Nicola, A.V., Hou, J., Major, E.O. and Straus, S.E. (2005) Herpes Simplex Virus Type 1 Enters Human Epidermal Keratinocytes, but Not Neurons, via a pH-Dependent Endocytic Pathway. Journal of Virology, 79, 7609-7616.
https://doi.org/10.1128/JVI.79.12.7609-7616.2005
[59]
Weed, D.J. and Nicola, A.V. (2017) Herpes Simplex Virus Membrane Fusion. Advances in Anatomy, Embryology and Cell Biology, 223, 29-47.
https://doi.org/10.1007/978-3-319-53168-7_2
[60]
Akhtar, J. and Shukla, D. (2009) Viral Entry Mechanisms: Cellular and Viral Mediators of Herpes Simplex Virus Entry. FEBS Journal, 276, 7228-7236.
https://doi.org/10.1111/j.1742-4658.2009.07402.x
[61]
Herold, B.C., WuDunn, D., Soltys, N. and Spear, P.G. (1991) Glycoprotein C of Herpes Simplex Virus Type 1 Plays a Principal Role in the Adsorption of Virus to Cells and in Infectivity. Journal of Virology, 65, 1090-1098.
https://doi.org/10.1128/JVI.65.3.1090-1098.1991
[62]
Gianni, T., Salvioli, S., Chesnokova, L.S., Hutt-Fletcher, L.M. and Campadelli-Fiume, G. (2013) αvβ6- and αvβ8-Integrins Serve as Interchangeable Receptors for HSV gH/gL to Promote Endocytosis and Activation of Membrane Fusion. PLoS Pathogens, 9, e1003806. https://doi.org/10.1371/journal.ppat.1003806
[63]
Dohner, K., Wolfstein, A., Prank, U., Echeverri, C., Dujardin, D., Vallee, R. and Sodeik, B. (2002) Function of Dynein and Dynactin in Herpes Simplex Virus Capsid Transport. Molecular Biology of the Cell, 13, 2795-2809.
https://doi.org/10.1091/mbc.01-07-0348
[64]
McMillan, T.N. and Johnson, D.C. (2001) Cytoplasmic Domain of Herpes Simplex Virus gE Causes Accumulation in the Trans-Golgi Network, a Site of Virus Envelopment and Sorting of Virions to Cell Junctions. Journal of Virology, 75, 1928-1940.
https://doi.org/10.1128/JVI.75.4.1928-1940.2001
[65]
Miranda-Saksena, M., Boadle, R.A., Aggarwal, A., Tijono, B., Rixon, F.J., Diefenbach, R. J. and Cunningham, A. L. (2009) Herpes Simplex Virus Utilizes the Large Secretory Vesicle Pathway for Anterograde Transport of Tegument and Envelope Proteins and for Viral Exocytosis from Growth Cones of Human Fetal Axons. Journal of Virology, 83, 3187-3199. https://doi.org/10.1128/JVI.01579-08
[66]
Miranda-Saksena, M., Denes, C.E., Diefenbach, R.J. and Cunningham, A.L. (2018) Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses, 10, 92. https://doi.org/10.3390/v10020092
[67]
Suzich, J.B. and Cliffe, A.R. (2018) Strength in Diversity: Understanding the Pathways to Herpes Simplex Virus Reactivation. Virology, 522, 81-91.
https://doi.org/10.1016/j.virol.2018.07.011
[68]
Theil, D., Arbusow, V., Derfuss, T., Strupp, M., Pfeiffer, M., Mascolo, A. and Brandt, T. (2001) Prevalence of HSV-1 LAT in Human Trigeminal, Geniculate, and Vestibular Ganglia and Its Implication for Cranial Nerve Syndromes. Brain Pathology, 11, 408-413. https://doi.org/10.1111/j.1750-3639.2001.tb00408.x
[69]
Marcocci, M.E., Napoletani, G., Protto, V., Kolesova, O., Piacentini, R., Li Puma, D. D., et al. (2020) Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends in Microbiology. https://doi.org/10.1016/j.tim.2020.03.003
[70]
Menendez, C.M. and Carr, D.J.J. (2017) Herpes Simplex Virus-1 Infects the Olfactory Bulb Shortly Following Ocular Infection and Exhibits a Long-Term Inflammatory Profile in the form of Effector and HSV-1-Specific T Cells. Journal of Neuroinflammation, 14, 124. https://doi.org/10.1186/s12974-017-0903-9
[71]
Duarte, L.F., Farias, M.A., Alvarez, D.M., Bueno, S.M., Riedel, C.A. and Gonzalez, P.A. (2019) Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships with Neurodegenerative Disorders. Frontiers in Cellular Neuroscience, 13, 46. https://doi.org/10.3389/fncel.2019.00046
[72]
Stroop, W.G., Rock, D.L. and Fraser, N.W. (1984) Localization of Herpes Simplex Virus in the Trigeminal and Olfactory Systems of the Mouse Central Nervous System During Acute and Latent Infections by in Situ Hybridization. Laboratory Investigation, 51, 27-38. https://pubmed.ncbi.nlm.nih.gov/6330452/
[73]
Frisoni, G.B., Laakso, M.P., Beltramello, A., Geroldi, C., Bianchetti, A., Soininen, H. and Trabucchi, M. (1999) Hippocampal and Entorhinal Cortex Atrophy in Frontotemporal Dementia and Alzheimer’s Disease. Neurology, 52, 91-100.
https://doi.org/10.1212/WNL.52.1.91
Grydeland, H., Walhovd, K.B., Westlye, L.T., Due-Tonnessen, P., Ormaasen, V., Sundseth, O. and Fjell, A.M. (2010) Amnesia Following Herpes Simplex Encephalitis: Diffusion-Tensor Imaging Uncovers Reduced Integrity of Normal-Appearing White Matter. Radiology, 257, 774-781. https://doi.org/10.1148/radiol.10100179
[76]
Penninkilampi, R., Brothers, H.M. and Eslick, G.D. (2016) Pharmacological Agents Targeting Gamma-Secretase Increase Risk of Cancer and Cognitive Decline in Alzheimer’s Disease Patients: A Systematic Review and Meta-Analysis. Journal of Alzheimer’s Disease, 53, 1395-1404. https://doi.org/10.3233/JAD-160275
[77]
Salloway, S., Sperling, R., Keren, R., Porsteinsson, A.P., van Dyck, C.H., Tariot, P.N., et al. (2011) A Phase 2 Randomized Trial of ELND005, Scyllo-Inositol, in Mild to Moderate Alzheimer Disease. Neurology, 77, 1253-1262.
https://doi.org/10.1212/WNL.0b013e3182309fa5
[78]
Bosson, O. (2018) BioArctic Announces Positive Topline Results of BAN2401 Phase 2b at 18 Months in Early Alzheimer’s Disease.
https://www.bioarctic.se/en/bioarctic-announces-positive-topline-results-of-ban2401-phase-2b-at-18-months-in-early-alzheimers-disease-3600/
[79]
Klein, G., Delmar, P., Voyle, N., Rehal, S., Hofmann, C., Abi-Saab, D., et al. (2019) Gantenerumab Reduces Amyloid-Beta Plaques in Patients with Prodromal to Moderate Alzheimer’s Disease: A PET Substudy Interim Analysis. Alzheimer’s Research & Therapy, 11, 101. https://doi.org/10.1186/s13195-019-0559-z
[80]
Wozniak, M.A., Frost, A.L., Preston, C.M. and Itzhaki, R.F. (2011) Antivirals Reduce the Formation of Key Alzheimer’s Disease Molecules in Cell Cultures Acutely Infected with Herpes Simplex Virus Type 1. PLoS ONE, 6, e25152.
https://doi.org/10.1371/journal.pone.0025152
[81]
Tzeng, N.S., Chung, C.H., Lin, F.H., Chiang, C.P., Yeh, C.B., Huang, S.Y., et al. (2018) Anti-Herpetic Medications and Reduced Risk of Dementia in Patients with Herpes Simplex Virus Infections—A Nationwide, Population-Based Cohort Study in Taiwan. Neurotherapeutics, 15, 417-429.
https://doi.org/10.1007/s13311-018-0611-x
[82]
Itzhaki, R.F. and Lathe, R. (2018) Herpes Viruses and Senile Dementia: First Population Evidence for a Causal Link. Journal of Alzheimer’s Disease, 64, 363-366.
https://doi.org/10.3233/JAD-180266