全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multi-Schlieren CT Measurements of Supersonic Microjets from Circular and Square Micro Nozzles

DOI: 10.4236/jfcmv.2020.83005, PP. 77-101

Keywords: Supersonic Microjet, Multi-Directional Quantitative Schlieren Optical System, Three-Dimensional (3D) Measurement, Computerized Tomography (CT), Circular and Square Micro Laval Nozzles

Full-Text   Cite this paper   Add to My Lib

Abstract:

Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers Mj ranging from 1.47 - 1.71, where the design Mach number is Md = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45° within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.

References

[1]  Emrich, R.J. (1981) Methods of Experimental Physics: Fluid Dynamics. Academic Press, New York, 18, Part A.
[2]  Ishino, Y., Hayashi, N., Bt Abd Razak, I.F. and Saiki, Y. (2015) 3D-CT Measurement of Instantaneous Density Distributions of High-Speed Premixed Turbulent Burner Flames with a Multi-Directional Schlieren Camera (Effects of Flow Velocity on 3D Flame Front Shape). Proceedings of the 1st Thermal and Fluids Engineering Summer Conference, New York, 9-12 August 2015, 121-131.
https://doi.org/10.1615/TFESC1.cbf.012970
[3]  Ishino, Y., Hayashi, N., Bt Abd Razak, I.F., Kato, T., Kurimoto, Y. and Saiki, Y. (2015) 3D-CT (Computer Tomography) Measurement of an Instantaneous Density Distribution of Turbulent Flames with a Multi-Directional Quantitative Schlieren Camera (Reconstructions of High-Speed Premixed Burner Flames with Different Flow Velocities). Flow, Turbulence and Combustion, 96, 819-835.
https://doi.org/10.1007/s10494-015-9658-5
[4]  Ishino, Y., Hayashi, N., Ishiko, Y., Nazari, A.Z., Nagase, K., Kakimoto, K. and Saiki, Y. (2016) Schlieren 3D-CT Reconstruction of Instantaneous Density Distributions of Spark-Ignited Flame Kernels of Fuel-Rich Propane-Air Premixture. Proceedings of ASME Heat Transfer Summer Conference, Washington DC, 10-14 July 2016, HT2016-7423, 1-10.
https://doi.org/10.1115/HT2016-7423
[5]  Ishino, Y., Hayashi, N., Ishiko, Y., Nagase, K., Kakimoto, K., Nazari, A.Z. and Saiki, Y. (2017) 3D Printing of Spark-Ignited Flame Kernels, Experimentally Captured by 3D-Computer Tomography and Multi-Directional Schlieren Photography. Heat Transfer, 139, Article ID: 020913.
https://doi.org/10.1115/1.4035583
[6]  Nazari, A.Z., Ishino, Y., Motohiro, T., Yamada, R., Ishiko, Y. and Saiki, Y. (2017) Schlieren CT Measurement of 3D Density Distributions of Flame Kernels of Spark-Ignited Direct-Injection of Free, Cavity-Guided and Plane-Guided Fuel Jets. Proceedings of the 11th Asia-Pacific Conference on Combustion, Sydney, 10-14 December 2017, 297.
http://www.anz-combustioninstitute.org/proceedings.php
[7]  Nazari, A.Z., Ishino, Y., Yamada, R., Motohiro, T., Ito, F., Kondo, H., Miyazato, Y. and Nakao, S. (2018) CT (Computer Tomography) Measurement of 3D Density Distributions of High-Speed Premixed Turbulent Flames (Multi-Path Integration Image-Noise Reduction Technique Based on Novel Concept of Complex Brightness Gradient in Quantitative Schlieren Images). Proceedings of the 18th International Symposium on Flow Visualization, Zurich, 26-29 June 2018, 212a.
https://doi.org/10.3929/ethz-b-000279202
[8]  Nazari, A.Z., Ishino, Y., Yamada, R., Motohiro, T., Ito, F., Kondo, H., Miyazato, Y. and Nakao, S. (2019) CT (Computer Tomography) Measurement of 3D Density Distributions of Flame: Obtaining Vertical Gradient Schlieren Brightness from Horizontal Gradient for Image-Noise Reduction. Proceedings of the 4th Thermal and Fluids Engineering Conference, Las Vegas, 14-17 April 2019, TFEC-2019-27746, 185-194.
https://doi.org/10.1615/TFEC2019.cbf.027746
[9]  Scroggs, S.D. and Settles, G.S. (1996) An Experimental Study of Supersonic Microjets. Experiments in Fluids, 21, 401-409.
https://doi.org/10.1007/BF00189042
[10]  Aniskin, V., Mironov, S. and Maslov, A. (2013) Investigation of the Structure of Supersonic Nitrogen Microjets. Microfluid Nanofluid, 14, 605-614.
https://doi.org/10.1007/s10404-012-1079-3
[11]  Phalnikar, K.A., Kumar, R. and Alvi, F.S. (2008) Experiments on Free and Impinging Supersonic Microjets. Experiments in Fluids, 44, 819-830.
https://doi.org/10.1007/s00348-007-0438-4
[12]  Smedley, G.T., Phares, D.J. and Flagan, R.C. (1999) Entrainment of Fine Particles from Surfaces by Impinging Shock Waves. Experiments in Fluids, 26, 116-125.
https://doi.org/10.1007/s003480050270
[13]  Bayt, R.L. and Breuer, K.S. (2001) Design and Performance of Hot and Cold Supersonic Microjets. 39th Aerospace Sciences Meeting and Exhibit, Reno, 8-11 January 2001, AIAA Paper 2001-0721.
https://doi.org/10.2514/6.2001-721
[14]  Alvi, F.S., Shin, C., Elavaeasan, R., Garg, G. and Krotopalli, A. (2003) Control of Supersonic Impinging Jet Flows Using Microjets. AIAA Journal, 41, 1347-1355.
https://doi.org/10.2514/2.2080
[15]  Kumar, V. and Alvi, F.S. (2006) Use of High-Speed Microjets for Active Separation Control in Diffusers. AIAA Journal, 44, 273-281.
https://doi.org/10.2514/1.8552
[16]  Zhuang, N., Alvi, F.S., Alkislar, M.B. and Shih, C. (2006) Supersonic Cavity Flows and Their Control. AIAA Journal, 44, 2118-2128.
https://doi.org/10.2514/1.14879
[17]  Arakeri, V.H., Krothapalli, A., Siddavaram, V., Alkislar, M.B. and Lourenco, L.M. (2003) On the Use of Microjets to Suppress Turbulence in a Mach 0.9 Axisymmetric Jet. Journal of Fluid Mechanics, 490, 75-98.
https://doi.org/10.1017/S0022112003005202
[18]  Teshima, K. (1990) Three-Dimensional Characteristics of Supersonic Jets. Proceedings of the 17th International Symposium on Rarefied Gas Dynamics, Aachen, 8-14 July 1990, 1042-1048.
[19]  Tsutsumi, S., Teramoto, S., Yamaguchi, K. and Nagashima, T. (2006) Structure of Underexpanded Jets from Square Nozzles. AIAA Journal, 44, 1287-1291.
https://doi.org/10.2514/1.12946
[20]  Gutmark, E.J. and Grinstein, F.F. (1999) Flow Control with Noncircular Jets. Annual Review of Fluid Mechanics, 31, 239-272.
https://doi.org/10.1146/annurev.fluid.31.1.239
[21]  Cabaleiro, J.M. and Aider, J.L. (2014) Axis-Switching of a Micro-Jet. Physics of Fluids, 26, Article ID: 031702.
https://doi.org/10.1063/1.4868256
[22]  Kolhe, P.S. and Agrawal, A.K. (2009) Density Measurements in a Supersonic Microjet Using Miniature Rainbow Schlieren Deflectometry. AIAA Journal, 47, 830-838.
https://doi.org/10.2514/1.37332
[23]  Ezoe, M., Nakao, S. and Miyazato, Y. (2019) Quantitative Flow Visualization by Rainbow Schlieren Deflectometry and Pitot Pressure Measurements for Leek Peeler Nozzle Jets. Journal of Flow Control, Measurement & Visualization, 7, 44-60.
https://doi.org/10.4236/jfcmv.2019.71004
[24]  Fukuda, H., Maeda, H., Ono, D., Nakao, S., Miyazato, Y. and Ishino, Y. (2016) Rainbow Schlieren Measurements in Underexpanded Jets from Axisymmetric Supersonic Micro Nozzles. Proceedings of the 27th International Symposium on Transport Phenomena, Honolulu, 20-23 September 2016, ISTP27-158, 1-7.
[25]  Maeda, H., Fukuda, H., Nakao, S., Miyazato, Y. and Ishino, Y. (2018) Rainbow Schlieren Measurements in Underexpanded Jets from Square Supersonic Micro Nozzles. EPJ Web Conferences, 180, Article ID: 02058.
https://doi.org/10.1051/epjconf/201818002058
[26]  Foelsch, K. (1949) The Analytical Design of an Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet. Journal of the Aeronautical Sciences, 16, 161-166 and 188.
https://doi.org/10.2514/8.11758
[27]  Yokoi, T., Shinohara, H., Hashimoto, T., Yamamoto, T. and Niio, Y. (2000) Implementation and Performance Evaluation of Iterative Reconstruction Algorithms in SPECT: A Simulation Study Using EGS4. Proceedings of the Second International Workshop on EGS, KEK Proceedings 200-20, Tsukuba, 8-12 August 2000, 224-234.
http://rcwww.kek.jp/egsconf/proceedings/2iwoegs/yokoi.pdf
[28]  Anderson, J.D. (1982) Modern Compressible Flow with Historical Perspective. McGraw-Hill Book Company, New York.
[29]  Zhao, J. (2019) Investigation on Wall Shear Stress Measurement in Supersonic Flows with Shock Waves Using Shear-Sensitive Liquid Crystal Coating. Aerospace Science and Technology, 85, 453-463.
https://doi.org/10.1016/j.ast.2018.12.034
[30]  Chapman, C.J. (2000) High Speed Flow. Cambridge University Press, New York.
[31]  He, M.S., Qin, L.Z. and Liu, Y. (2015) Oscillation Flow Induced by Underwater Supersonic Gas Jets from a Rectangular Laval Nozzle. Procedia Engineering, 99, 1531-1542.
https://doi.org/10.1016/j.proeng.2014.12.705
[32]  Zaman, K.B.M.Q. (1996) Axis Switching and Spreading of an Asymmetric Jet: The Role of Coherent Structure Dynamics. Journal of Fluid Mechanics, 316, 1-27.
https://doi.org/10.1017/S0022112096000420
[33]  Chen, N. and Yu, H. (2014) Mechanism of Axis-Switching in Low Aspect-Ratio Rectangular Jets. Computers & Mathematics with Applications, 67, 437-444.
https://doi.org/10.1016/j.camwa.2013.03.018
[34]  Tam, C.K.W. and Tanna, H.K. (1982) Shock Associated Noise of Supersonic Jets from Convergent-Divergent Nozzles. Journal of Sound and Vibration, 81, 337-358.
https://doi.org/10.1016/0022-460X(82)90244-9
[35]  Tam, C.K.W. (1988) The Shock-Cell Structures and Screech Tone Frequencies of Rectangular and Non-Axisymmetric Supersonic Jets. Journal of Sound and Vibration, 121, 135-147.
https://doi.org/10.1016/S0022-460X(88)80066-X
[36]  Mehta, R.C. and Prasad, J.K. (1996) Estimation of Shock-Cell Structure of Axisymmetric Supersonic Free Jets. Indian Journal of Engineering and Materials Sciences, 3, 141-147.
http://nopr.niscair.res.in/handle/123456789/29795
[37]  Hu, T.F. and McLaughlin, D.K. (1990) Flow and Acoustic Properties of Low Reynolds Number Underexpanded Supersonic Jets. Journal of Sound and Vibration, 141, 485-505.
https://doi.org/10.1016/0022-460X(90)90640-L
[38]  Schlichting, H. (1979) Boundary-Layer Theory. 7th Edition, McGraw Hill, New York.
https://en.wikipedia.org/wiki/Boundary_layer_thickness#cite_note-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133