全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Quantum Fisher Information of Two-Level Atomic System under the Influence of Thermal Field, Intrinsic Decoherence, Stark Effect and Kerr-Like Medium

DOI: 10.4236/jqis.2021.111003, PP. 24-41

Keywords: Quantum Fisher Information (QFI), Intrinsic Decoherence (ID), Thermal Environment, Two-Level Atomic System, Kerr and Stark Effect

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we have proposed the numerical calculations to study the quantum entanglement (QE) of moving two-level atom interacting with a coherent and the thermal field influenced by intrinsic decoherence (ID), Kerr medium (non-linear) and the Stark effect. The wave function of the complete system interacting with a coherent and the thermal field is calculated numerically affected by ID, Kerr (non-linear) and Stark effects. It has been seen that the Stark, Kerr, ID and the thermal environment have a significant effect during the time evolution of the quantum system. Quantum Fisher information (QFI) and QE decrease as the value of the ID parameter is increased in the thermal field without the atomic movement. It is seen that QFI and von Neumann entropy (VNE) show an opposite and periodic response in the presence of atomic motion. The non-linear Kerr medium has a more prominent and significant effect on the QE as the value of the Kerr parameter is decreased. At smaller values of the non-linear Kerr parameter, the VNE increases, however, QFI decreases, so QFI and VNE have a monotonic connection with one another. As the value of the Kerr parameter is increased, the effect of non-linear Kerr doesn’t stay critical on both QFI and QE. However, a periodic response of QE is seen because of the atomic movement which becomes modest under natural impacts. Moreover, it has been seen that QFI and QE rot soon at the smaller values of the Stark parameter. However, as the value of the Stark parameter is increased, the QFI and QE show periodic response even when the atomic movement is absent.

References

[1]  Helstrom, C.W. (1976) Quantum Detection and Estimation Theory. Academic, New York.
[2]  Holevo, A.S. (1982) Probabilistic and Statistical Aspect of Quantum Theory. North-Holland, Amsterdam.
[3]  Meyer, V., Rowe, M., Kielpinski, D., Sackett, C., Itano, W., Monroe, C. and Wineland, D.J. (2001) Experimental Demonstration of Entanglement-Enhanced Rotation Angle Estimation Using Trapped Ions. Physical Review Letters, 86, 5870-5873.
https://doi.org/10.1103/PhysRevLett.86.5870
[4]  Leibfried, D., Barrett, M., Schaetz, T., Britton, J., Chiaverini, J., Itano, W., Jost, J., Langer, C. and Wineland, D. (2004) Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States. Science, 304, 1476-1478.
https://doi.org/10.1126/science.1097576
[5]  Afek, I., Ambar, O. and Silberberg, Y. (2010) High-NOON States by Mixing Quantum and Classical Light. Science, 328, 879-881.
https://doi.org/10.1126/science.1188172
[6]  Pezzé, L. and Smerzi, A. (2008) Mach-Zehnder Interferometry at the Heisenberg Limit with Coherent and Squeezed-Vacuum Light. Physical Review Letters, 100, Article ID: 073601.
https://doi.org/10.1103/PhysRevLett.100.073601
[7]  Giovannetti, V., Lloyd, S. and Maccone, L. (2011) Advances in Quantum Metrology. Nature Photonics, 5, 222-229.
https://doi.org/10.1038/nphoton.2011.35
[8]  Bollinger, J.J., Itano, W.M., Wineland, D.J. and Heinzen, D.J. (1996) Optimal Frequency Measurements with Maximally Correlated States. Physical Review A, 54, R4649.
https://doi.org/10.1103/PhysRevA.54.R4649
[9]  Hubner, M. (1992) Explicit Computation of the Bures Distance for Density Matrices. Physics Letters A, 163, 239-242.
https://doi.org/10.1016/0375-9601(92)91004-B
[10]  Braunstein, S.L. and Caves, C.M. (1994) Statistical Distance and the Geometry of Quantum States. Physical Review Letters, 72, 3439-3443.
https://doi.org/10.1103/PhysRevLett.72.3439
[11]  Petz, D. (1996) Monotone Metrics on Matrix Spaces. Linear Algebra and its Applications, 244, 81-96.
https://doi.org/10.1016/0024-3795(94)00211-8
[12]  Pezze, L. and Smerzi, A. (2009) Entanglement, Nonlinear Dynamics, and the Heisenberg Limit. Physical Review Letters, 102, Article ID: 100401.
https://doi.org/10.1103/PhysRevLett.102.100401
[13]  Ma, J. and Wang, X.G. (2009) Fisher Information and Spin Squeezing in the Lipkin-Meshkov-Glick Model. Physical Review A, 80, Article ID: 012318.
https://doi.org/10.1103/PhysRevA.80.012318
[14]  Rivas, A. and Luis, A. (2010) Precision Quantum Metrology and Nonclassicality in Linear and Nonlinear Detection Schemes. Physical Review Letters, 105, Article ID: 010403.
https://doi.org/10.1103/PhysRevLett.105.010403
[15]  Giovannetti, V., Lloyd, S. and Maccone, L. (2006) Quantum Metrology. Physical Review Letters, 96, Article ID: 010401.
https://doi.org/10.1103/PhysRevLett.96.010401
[16]  Huegla, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B. and Cirac, J.I. (1997) Improvement of Frequency Standards with Quantum Entanglement. Physical Review Letters, 79, 3865.
https://doi.org/10.1103/PhysRevLett.79.3865
[17]  Escher, B.M., de Matos Fillo, R.L. and Davidovich, L. (2011) General Framework for Estimating the Ultimate Precision Limit in Noisy Quantum-Enhanced Metrology. Nature Physics, 7, 406-411.
https://doi.org/10.1038/nphys1958
[18]  Uys, H. and Meystre, P. (2007) Quantum States for Heisenberg-Limited Interferometry. Physical Review A, 76, Article ID: 013804.
https://doi.org/10.1103/PhysRevA.76.013804
[19]  Helstrom, C.W. (1976) Quantum Detection and Estimation Theory. Academic, New York.
[20]  Holevo, A.S. (1982) Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam.
[21]  Wootters, W.K. (1981) Statistical Distance and Hilbert Space. Physical Review D, 23, 357-362.
https://doi.org/10.1103/PhysRevD.23.357
[22]  Braunstein, S.L. and Caves, C.M. (1994) Statistical Distance and the Geometry of Quantum States. Physical Review Letters, 72, 3439-3443.
https://doi.org/10.1103/PhysRevLett.72.3439
[23]  Lu, X.M., Wang, X.G. and Sun, C.P. (2010) Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems. Physical Review A, 82, Article ID: 042103.
https://doi.org/10.1103/PhysRevA.82.042103
[24]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University, Princeton.
[25]  Phoenix, S.J. and Knight, P.L. (1988) Fluctuations and Entropy in Models of Quantum Optical Resonance. Annals of Physics, 186, 381.
https://doi.org/10.1016/0003-4916(88)90006-1
[26]  Rungta, P., Buzek, V., Caves, C.M., Hillery, M. and Milburn, G.J. (2001) Universal State Inversion and Concurrence in Arbitrary Dimensions. Physical Review A, 64, Article ID: 042315.
https://doi.org/10.1103/PhysRevA.64.042315
[27]  Uhlmann, A. (2000) Fidelity and Concurrence of Conjugated States. Physical Review A, 62, Article ID: 032307.
https://doi.org/10.1103/PhysRevA.62.032307
[28]  Berrada, K., El Baz, M., Saif, F., Hassouni, Y. and Mnia, S. (2009) Entanglement Generation from Deformed Spin Coherent States Using a Beam Splitter. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 285306.
https://doi.org/10.1088/1751-8113/42/28/285306
[29]  Obada, A.-S.F. and Abdel-Khalek, S. (2010) Entanglement Evaluation with Atomic Fisher Information. Physica A, 389, 891-898.
https://doi.org/10.1016/j.physa.2009.09.015
[30]  Abdel-Khalek, S. (2009) Dynamics of Fisher Information in Kerr Medium. International Journal of Quantum Information, 7, 1541.
https://doi.org/10.1142/S0219749909005870
[31]  Sergent, M., Scully, M.O. and Lamb, W.E. (1974) Laser Physics. Adison-Wesely, Reading.
[32]  Allen, L. and Eberly, J.H. (1975) Optical Resonance and Two-Level Atoms. Wiley, New York.
[33]  Jaynes, E.T. and Cummings, F.W. (1963) Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proceedings of the IEEE, 51, 89.
https://doi.org/10.1109/PROC.1963.1664
[34]  Narozhny, N.B., Sanchez, J.J. and Eberly, J.H. (1981) Coherence versus Incoherence: Collapse and Revival in a Simple Quantum Model. Physical Review A, 23, 236.
https://doi.org/10.1103/PhysRevA.23.236
[35]  Buck, B. and Sukumar, C.V. (1981) Exactly Soluble Model of Atom-Phonon Coupling Showing Periodic Decay and Revival. Physics Letters A, 81, 132-135.
https://doi.org/10.1016/0375-9601(81)90042-6
[36]  Abdel-Hafez, A.M., Obada, A.S.F. and Ahmed, M.M.A. (1987) N-Level Atom and (N-1) Modes: An Exactly Solvable Model with Detuning and Multiphotons. Journal of Physics A, 20, L359.
https://doi.org/10.1088/0305-4470/20/6/004
[37]  Law, C.W. and Eberly, J.H. (1991) Response of a Two-Level Atom to a Classical Field and a Quantized Cavity Field of Different Frequencies. Physical Review, 43, 6337-6344.
https://doi.org/10.1103/PhysRevA.43.6337
[38]  Abdel-Aty, M., Abdel-Khalek, S. and Obada, A.S.F. (2000) Pancharatnam Phase of Two-Mode Optical Fields with Kerr Nonlinearity. Optical Review, 7, 499-504.
https://doi.org/10.1007/s10043-000-0499-6
[39]  Abdel-Aty, M., Abdel-Khalek, S. and Obada, A.-S.F. (2001) Entropy Evolution of the Bimodal Field Interacting with an Effective Two-Level Atom via the Raman Transition in Kerr Medium. Chaos, Solitons & Fractals, 12, 2015-2022.
https://doi.org/10.1016/S0960-0779(00)00116-8
[40]  Faghihi, M.J. and Tavassoly, M.K. (2012) Dynamics of Entropy and Nonclassical Properties of the State of a Λ-Type Three-Level Atom Interacting with a Single-Mode Cavity Field with Intensity-Dependent Coupling in a Kerr Medium. Journal of Physics B: Atomic, Molecular and Optical Physics, 45, Article ID: 035502.
https://doi.org/10.1088/0953-4075/45/3/035502
[41]  Abdalla, M.S., Obada, A.-S.F. and Abdel-khalek, S. (2008) Entropy Squeezing of Time Dependent Single-Mode Jaynes—Cummings Model in Presence of Non-Linear Effect. Chaos, Solitons and Fractals, 36, 405-417.
https://doi.org/10.1016/j.chaos.2006.06.067
[42]  Ateto, M.S. (2010) Quantum Entropy of a Nonlinear Two-Level Atom with Atomic Motion. International Journal of Theoretical Physics, 49, 276-292.
https://doi.org/10.1007/s10773-009-0201-0
[43]  He, Z., Xiong, Z. and Zhang, Y. (2006) Influence of Intrinsic Decoherence on Quantum Teleportation via Two-Qubit Heisenberg XYZ Chain. Physics Letters A, 354, 79-83.
https://doi.org/10.1016/j.physleta.2006.01.038
[44]  Abdel-Aty, Y. (2008) New Features of Total Correlations in Coupled Josephson Charge Qubits with Intrinsic Decoherence. Physics Letters A, 372, 3719-3724.
https://doi.org/10.1016/j.physleta.2008.02.017
[45]  Abdel-Khalek, S., Berrada, K. and Obada, A.S.F. (2012) Quantum Fisher Information for a Single Qubit System. The European Physical Journal D, 66, Article No. 69.
https://doi.org/10.1140/epjd/e2012-20576-8
[46]  Berrada, K., Abdel-Khalek, S. and Obadad, A.-S.F. (2012) Quantum Fisher Information for a Qubit System Placed inside a Dissipative Cavity. Physics Letters A, 376, 1412-1416.
https://doi.org/10.1016/j.physleta.2012.03.023
[47]  Buzek, V. and Jex, I. (1990) Dynamics of a Two-Level Atom in a Kerr-Like Medium. Optics Communications, 78, 425-435.
https://doi.org/10.1016/0030-4018(90)90340-Y
[48]  Baghshahi, H.R., Tavassoly, M.K. and Behjat, A. (2014) Entropy Squeezing and Atomic Inversion in the k-Photon Jaynes-Cummings Model in the Presence of the Stark Shift and a Kerr Medium: A Full Nonlinear Approach. Chinese Physics B, 23, Article ID: 074203.
https://doi.org/10.1088/1674-1056/23/7/074203
[49]  Abdel-Khalek, S. and Halawani, S.H.A. (2016) New Features of the Stationary and Moving Atom—Atom Entanglement. Optik—International Journal for Light and Electron Optics, 127, 9020-9025.
https://doi.org/10.1016/j.ijleo.2016.05.102
[50]  von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[51]  Zhong, W., Sun, Z., Ma, J., Wang, X.G. and Nori, F. (2013) Fisher Information under Decoherence in Bloch Representation. Physical Review A, 87, Article ID: 022337.
https://doi.org/10.1103/PhysRevA.87.022337
[52]  Berrada, K., Khalek, S.A. and Ooi, C.H.R. (2012) Quantum Metrology with Entangled Spin-Coherent States of Two Modes. Physical Review A, 86, Article ID: 033823.
https://doi.org/10.1103/PhysRevA.86.033823
[53]  Berrada, K. (2013) Quantum Metrology with SU (1, 1) Coherent States in the Presence of Nonlinear Phase Shifts. Physical Review A, 88, Article ID: 013817.
https://doi.org/10.1103/PhysRevA.88.013817
[54]  Lu, X., Wang, X. and Sun, C.P. (2010) Quantum Fisher Information Flow and Non-Markovian Processes of Open Systems. Physical Review A, 82, Article ID: 042103.
https://doi.org/10.1103/PhysRevA.82.042103
[55]  Barndorff-Nielsen, O.E., Gill, R.D. and Jupp, P.E. (2003) On Quantum Statistical Inference. Journal of the Royal Statistical Society: Series B, 65, 775-816.
https://doi.org/10.1111/1467-9868.00415
[56]  Milburn, G.J. (1991) Intrinsic Decoherence in Quantum Mechanics. Physical Review A, 44, 5401-5406.
https://doi.org/10.1103/PhysRevA.44.5401
[57]  Plenio, M.B. and Knight, P.L. (1997) Decoherence Limits to Quantum Computation Using Trapped Ions. Proceedings of the Royal Society of London. Series A, 453, 2017-2041.
https://doi.org/10.1098/rspa.1997.0109
[58]  Kuang, L.M., Chen, X. and Ge, M.L. (1995) Influence of Intrinsic Decoherence on Nonclassical Effects in the Multiphoton Jaynes-Cummings Model. Physical Review A, 52, 1857-1869.
https://doi.org/10.1103/PhysRevA.52.1857
[59]  Enaki, N.A. and Ciobanu, N.J. (2008) Horopter Measured as a Function of Wavelength. Journal of Modern Optics, 55, 589-598.
https://doi.org/10.1080/09500340701470029

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133